Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T07:16:29.651Z Has data issue: true hasContentIssue false

Three-dimensional numerical simulation of buoyancy-driven convection in vertical cylinders heated from below

Published online by Cambridge University Press:  26 April 2006

G. Neumann
Affiliation:
Institut für Werkstoffwissenschaften VI, Universität Erlangen-Nürnberg, Martensstraße 7, D-8520 Erlangen, FRG Present address: Fraunhofer-Institut für Angenwandte Festkörperphysik, Eckerstraße 4, D-7800 Freiburg, FRG

Abstract

Steady and oscillatory convection in rigid vertical cylinders heated from below studied by means of a numerical solution of the three-dimensional, time-dependent Boussinesq equations. Both adiabatic and ideal conducting sidewalls are considered. The effect of the geometry of the container on the onset of convective instability and the structure and symmetry of the flow are analysed and compared with the results of linear stability theories. The nonlinear evolution and stability of convective flows at Rayleigh numbers beyond the critical number for the onset of convective motion are investigated for Prandtl numbers of 0.02 to 6.7. The limits of stable axisymmetric solutions are an important finding of this study. The onset and the frequency of oscillatory instability are calculated for the small Prandtl number 0.02 and compared with experimental data. Calculated stream patterns and velocity profiles illustrate the three-dimensional structure of steady convection and the time-dependent behaviour of oscillatory flows.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arneodo, A., Coullet, P. & Tresser, C. 1981 Phys. Lett. A 81, 197
Bolton, E. W. & Busse, F. H. 1985 J. Fluid Mech. 150, 487.
Brandt, P. N., Scharmer, G. B., Ferguson, S., Shine, R. A., Tarbell, T. D. & Title, A. M. 1988 Nature 335, 238.
Busse, F. H. & Bolton, E. W. 1984 J. Fluid Mech. 146, 115.
Eckmann, J. P. 1981 Rev. Mod. Phys. 53, 643.
Feigenbaum, M. 1978 J. Statist. Phys. 19, 25.
Gear, C. W. 1971 Numerical Initial Value Problems in Ordinary Differential Equations, p. 209. Prentice Hall.
Gough, D. O., Spiegel, E. A. & Toomre, J. 1975 J. Fluid Mech. 68, 695.
Graham, E. 1977 In Problems of Stellar Convection (ed. E. A. Spiegel & J. P. Zahn). Lecture Notes in Physics, vol. 41, p. 151. Springer.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Haken, H. 1983 Synergetics. Springer.
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 J. Fluid Mech. 73, 353.
Knobloch, E., Moore, D. R., Toomre, J. & Weiss, N. O. 1986 J. Fluid Mech. 166, 409.
Kuramoto, Y. 1984 Chemical Oscillations, Waves and Turbulence, pp. 132137. Springer.
Kuramoto, Y. & Koga, M. 1982 Phys. Lett. A 92, 1
Landford, O. E. 1982 Ann. Rev. Fluid Mech. 14, 347.
Massaguer, J. M. & Mercader, I. 1984 In Cellular Structures in Instabilities (ed. J. E. Wesfreid & S. Zaleski). Lecture Notes in Physics, vol. 210, pp. 270277. Springer.
Massaguer, J. M. & Mercader, I. 1988 J. Fluid Mech. 189, 367 (referred to as Paper I).
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279.
Siggia, E. D. & Zippelius, A. 1983 Phys. Fluids 26, 2905.
Sparrow, C. T. 1982 The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer.
Swift, J. W. & Wiesenfeld, K. 1984 Phys. Rev. Lett. 52, 705.
Toomre, J. 1988 Nature 335, 202.
Toomre, J., Gough, D. O. & Spiegel, E. A. 1977 J. Fluid Mech. 79, 1.
Walter, W. 1970 Differential and Integral Inequalities, p. 275. Springer.
Zippelius, A. & Siggia, E. D. 1982 Phys. Rev. A 26, 178