Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T04:07:49.288Z Has data issue: false hasContentIssue false

A scaling analysis for turbulent shock-wave/boundary-layer interactions

Published online by Cambridge University Press:  02 January 2013

L. J. Souverein
Affiliation:
Astrium GmbH Space Transportation, Propulsion & Equipment – Advanced Programmes, Engineering & Technology, 81663 Munich, Germany
P. G. Bakker
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
P. Dupont*
Affiliation:
Institut Universitaire des Systèmes Thermiques Industriels, Aix-Marseille Université and UMR CNRS 7343, Marseille 13013, France
*
Email address for correspondence: [email protected]

Abstract

A model based on mass conservation properties is developed for shock-wave/boundary-layer interactions (SWBLIs), aimed at reconciling the observed great diversity in flow organization documented in the literature, induced by variations in interaction geometry and aerodynamic conditions. It is the basis for a scaling approach for the interaction length that is valid independent of the geometry of the flow (considering compression corners and incident-reflecting shock interactions). As part of the analysis, a scaling argument is proposed for the imposed pressure jump that depends principally on the free-stream Mach number and the flow deflection angle. Its interpretation as a separation criterion leads to a successful classification of the separation states for turbulent SWBLIs (attached, incipient or separated). In addition, the dependence of the interaction length on the Reynolds number and the Mach numbers is accounted for. A large compilation of available data provides support for the validity of the model. Some general properties on the state of the flow are derived, independent of the geometry of the flow and for a wide range of Mach numbers and Reynolds numbers.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. D. Jr 1991 Fundamentals of Aerodynamics, 2nd edn. McGraw-Hill.Google Scholar
Ardonceau, P. L. 1984 The structure of turbulence in a supersonic shock-wave/boundary-layer interaction. AIAA J. 22 (9), 12541262.CrossRefGoogle Scholar
Atkin, C. J. & Squire, L. C. 1992 A study of the interaction of a normal shock wave with a turbulent boundary layer at Mach numbers between 1.30 and 1.55. Eur. J. Mech. 11 (1), 93118.Google Scholar
Benkemoun, L. & Salaun, M. 1988 Développement d’une couche limite turbulente supersonique sur une paroi chauffée: propriétés du champ turbulent et exploitation théorique. Tech. Rep, ONERA Rept. n74/7078.Google Scholar
Beresh, S. J., Clemens, N. T. & Dolling, S. D. 2002 Relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40 (12), 24122422.CrossRefGoogle Scholar
Bourgoing, A. & Reijasse, P. H. 2005 Experimental analysis of unsteady separated flows in a supersonic planar nozzle. Shock Waves 14 (4), 251258.CrossRefGoogle Scholar
Bruce, P. J. K. & Babinsky, H. 2008 Unsteady shock wave dynamics. J. Fluid Mech. 603, 463473.CrossRefGoogle Scholar
Brusniak, L. & Dolling, D. S. 1994 Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions. J. Fluid Mech. 273, 375409.CrossRefGoogle Scholar
Bueno, P. C. 2006 The effects of upstream mass injection by vortex generator jets on shock-induced turbulent boundary layer separation. Doctoral thesis, The University of Texas at Austin.Google Scholar
Bur, R., Benay, R., Galli, A. & Berthouze, P. 2008 Experimental and numerical study of forced shock-wave oscillations in a transonic channel. Aerosp. Sci. Technol. 10, 265278.CrossRefGoogle Scholar
Chapman, D. R., Kuehn, D. M. & Larson, H. K. 1957 Investigation of separated flow in supersonic and subsonic streams with emphasis on the effect of transition. Tech. Rep, NACA, Technical Note 3869.Google Scholar
Cherry, N. J., Hillier, R. & Latour, M. E. M. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.CrossRefGoogle Scholar
Clemens, N. T. & Narayanaswamy, V. 2009 Shock/turbulent boundary layer interactions: review of recent work on sources of unsteadiness. In 39th Fluid Dynamics Conference and Exhibit, San Antonio, Texas, AIAA Paper 2009-3710.Google Scholar
Debiève, J. F. 1983 Etude d’une interaction turbulence–onde de choc. Thèse d’etat, Université d’Aix–Marseille.Google Scholar
Délery, J. M. & Dussauge, J. P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19 (6), 453468.CrossRefGoogle Scholar
Délery, J. M. & Marvin, J. G. 1986 Shock wave–boundary layer interactions. Tech. Rep, AGARDograph no. 280.Google Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Dolling, D. S. & Brusniak, L. 1989 Separation shock motion in fin, cylinder, and compression ramp-induced turbulent interactions. AIAA J. 27 (6), 734742.CrossRefGoogle Scholar
Dolling, D. S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow field. AIAA J. 21 (12), 16281634.CrossRefGoogle Scholar
Dolling, D. S. & Or, C. T. 1985 Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. Fluids 3, 2432.CrossRefGoogle Scholar
Dupont, P., Haddad, C., Ardissone, J. P. & Debiève, J. F. 2005 Space and time organisation of a shock wave/turbulent boundary layer interaction. Aerosp. Sci. Technol. 9 (7), 561572.CrossRefGoogle Scholar
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J. F. 2008 Investigation of an oblique shock reflection with separation by PIV measurements. AIAA J. 46 (6), 13651370.CrossRefGoogle Scholar
Dussauge, J. P., Dupont, P. & Debiève, J. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10, 8591.CrossRefGoogle Scholar
Erengil, M. E. & Dolling, D. S. 1991a Correlation of separation shock motion with pressure fluctuations in the incoming boundary layer. AIAA J. 29 (11), 18681877.CrossRefGoogle Scholar
Erengil, M. E. & Dolling, D. S. 1991b Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA J. 29 (5), 728735.CrossRefGoogle Scholar
Frey, M. & Hagemann, G. 1998 Status of flow separation prediction in rocket nozzles. In 34th Joint Propulsion Conference and Exhibit. AIAA Paper 98-3619.CrossRefGoogle Scholar
Frey, M. & Hagemann, G. 2000 Restricted shock separation in rocket nozzles. J. Propul. Power 16 (3), 478484.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007a Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007b Effects of upstream coherent structures on low-frequency motion of shock-induced turbulent separation. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA paper 2007-1141.Google Scholar
Garnier, E. 2009 Stimulated detached eddy simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19 (6), 479486.CrossRefGoogle Scholar
Ginoux, J. J. 1973 Interaction entre ondes de choc et couches limites. In Chocs et Ondes de Choc, vol. 2 (ed. Jaumotte, A. L.). Masson & Cie.Google Scholar
Green, J. E. 1970 Reflexion of an oblique shock wave by a turbulent boundary layer. J. Fluid Mech. 40, 8195.CrossRefGoogle Scholar
Hou, Y. X. 2003 Particle image velocimetry study of shock-induced turbulent boundary layer separation. Doctoral thesis, The University of Texas at Austin.CrossRefGoogle Scholar
Humble, R. A. 2009 Unsteady flow organization of a shock wave/boundary layer interaction. Doctoral thesis, Delft University of Technology.CrossRefGoogle Scholar
Humble, R. A., Elsinga, G. E., Scarano, F. & Van Oudheusden, B. W. 2009a Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.CrossRefGoogle Scholar
Humble, R. A., Scarano, F. & Van Oudheusden, B. W. 2009b Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.CrossRefGoogle Scholar
Kuntz, D. W., Amatucci, V. A. & Addy, A. L. 1987 Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction. AIAA J. 25 (5), 668675.CrossRefGoogle Scholar
Laurent, H. 1996 Turbulence d’une interaction onde de choc–couche limite sur paroi plane adiabatique ou chauffée. Thèse de 3ème cycle, Université d’Aix–Marseille II.Google Scholar
Piponniau, S. 2009 Instationnarités dans les décollements compressibles: cas des couches limites soumises à ondes de choc. Thèse de doctorat, Université de Provence.Google Scholar
Piponniau, S., Dussauge, J. P., Debiève, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.CrossRefGoogle Scholar
Pirozzoli, S., Beer, A., Bernardini, M. & Grasso, F. 2009 Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves 19 (6), 487497.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at $M= 2. 25$ . Phys. Fluids 18, 065113.CrossRefGoogle Scholar
Plotkin, K. J. 1975 Shock wave oscillation driven by turbulent boundary layer fluctuations. AIAA J. 13 (8), 10361040.CrossRefGoogle Scholar
Polivanov, P., Sidorenko, A. & Maslov, A. 2009 Report on the measurement of shock reflection by : final report. UFAST Deliverable 3.3.6, Institute of Theoretical and Applied Mechanics.Google Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Low Reynolds number effects in a Mach 3 shock/turbulent-boundary-layer interaction. AIAA J. 46 (7), 18841887.CrossRefGoogle Scholar
Ringuette, M. J., Bookey, P., Wyckham, C. & Smits, A. J. 2009 Experimental study of a Mach 3 compression ramp interaction at $R{e}_{\theta } = 2400$ . AIAA J. 47 (2), 373385.CrossRefGoogle Scholar
Scarano, F. & Riethmuller, M. L. 1999 Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26, 513523.CrossRefGoogle Scholar
Schmucker, R. 1973 Strömungsvortgänge beim Betrieb überexpandierter Düsen chemischer Raketentriebwerke (Flow processes in overexpanded nozzles of chemical rocket engines). Tech. Rep., Report TUM-LRT-TB-7,-10,-14, Technical University Munich, Munich.Google Scholar
Selig, M. S., Andreopoulos, J., Muck, K. C., Dussauge, J. P. & Smits, A. J. 1989 Details of a shock-separated turbulent boundary layer at a compression corner. AIAA J. 27 (7), 862869.CrossRefGoogle Scholar
Settles, G. S., Bogdonoff, S. M. & Vas, I. E. 1976 Incipient separation of a supersonic turbulent boundary layer at high Reynolds number. AIAA J. 14 (1), 5056.CrossRefGoogle Scholar
Settles, G. S., Fitzpatrick, T. J. & Bogdonoff, S. M. 1979 Detailed study of attached and separated compression corner flow fields in high Reynolds number supersonic flow. AIAA J. 17, 579585.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. AIP.Google Scholar
Smits, A. J. & Muck, K. C. 1987 Experimental study of three shock wave/turbulent boundary layer interactions. J. Fluid Mech. 182, 291314.CrossRefGoogle Scholar
Souverein, L. J. 2010 On the scaling and unsteadiness of shock induced separation. Doctoral thesis, Delft University of Technology–Université de Provence.Google Scholar
Souverein, L. J. & Debiève, J. F. 2010 Effects of air jet vortex generators on a shock wave boundary layer interaction. Exp. Fluids 49 (5), 10531064.CrossRefGoogle Scholar
Souverein, L. J., Dupont, P., Debiève, J. F., Dussauge, J. P., Van Oudheusden, B. W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48 (7), 14801493.CrossRefGoogle Scholar
Souverein, L. J., Van Oudheusden, B. W., Scarano, F. & Dupont, P. 2009 Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas. Sci. Technol. 20 (7), 074003.CrossRefGoogle Scholar
Spaid, F. W. & Frishett, J. C. 1972 Incipient separation of a supersonic, turbulent boundary layer, including effect of heat transfer. AIAA J. 10 (7), 915922.CrossRefGoogle Scholar
Summerfield, M., Foster, C. & Swan, W. 1954 Flow separation in overexpanded supersonic exhaust nozzles. Tech. Rep. 24, Jet Propulsion Laboratory.Google Scholar
Thomas, F. O., Putman, C. M. & Chu, H. C. 1994 On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interaction. Exp. Fluids 18, 6981.CrossRefGoogle Scholar
Thomke, G. J. & Roshko, A. 1969 Incipient separation of a turbulent boundary layer at high Reynolds number in two-dimensional supersonic flow over a compression corner. Tech. Rep. DAC-59819, NASA–Ames Research Center.Google Scholar
Touber, E. & Sandham, N. D. 2008 Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. In 38th AIAA Fluid Dynamics Conference, Seattle, Washington, doi:10.2514/6.2008-4170.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2009a Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19 (6), 469478.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2009b Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23 (2), 79107.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671 (3), 417465.CrossRefGoogle Scholar
Ünalmis, Ö. H. & Dolling, D. S. 1996 On the possible relationship between low frequency unsteadiness of shock-induced separated flow and Goertler vortices. In 27th AIAA Fluid Dynamics Conference, New Orleans, Louisiana, AIAA Paper 1996-2002.Google Scholar
Viswanath, P. R. 1988 Shock-wave–turbulent-boundary-layer interaction and its control: a survey of recent developments. Sādhanā 12, 45104.CrossRefGoogle Scholar
Wu, M. & Martin, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar
Zukoski, E. 1967 Turbulent boundary-layer separation in front of a forward-facing step. AIAA J. 5 (10), 17461753.CrossRefGoogle Scholar