Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T06:42:48.710Z Has data issue: true hasContentIssue false

Relative dispersion in two-dimensional turbulence

Published online by Cambridge University Press:  26 April 2006

A. Babiano
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure. Paris Cedex 05, France
C. Basdevant
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure. Paris Cedex 05, France
P. Le Roy
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure. Paris Cedex 05, France
R. Sadourny
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure. Paris Cedex 05, France

Abstract

In this paper we study the statistical laws of relative dispersion in two-dimensional turbulence by deriving an exact equation governing its evolution in time, then evaluating the magnitude of its various terms in numerical experiments, which allows us to check the validity of the classical dispersion laws: the equivalent to the Richardson-Obukhov t3 law in the energy cascade range, and the Kraichnan-Lin exponential law in the enstrophy cascade range. We examine theoretically and experimentally the conditions of validity of both laws. It is found that the t3 law is obtained in the energy inertial range provided the separation scale of the particles is smaller by an order of magnitude than the injection scale. When the t3 law is reached, the relative acceleration correlations are observed to have reached a statistical quasistationary stage: this would tend to justify in the energy inertial range of two-dimensional turbulence a working hypothesis formulated by Lin & Reid (1963); also, the necessity of starting from very small initial separations to get the t3 law may be explained by the time necessary for relative acceleration correlations to reach the statistical quasi-stationary regime. On the other hand, the Kraichnan-Lin exponential law is, strictly speaking, never observed; it is in fact reduced to a very short transient stage when the relative dispersion characteristic time reaches its minimum value, as predicted by Batchelor.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900 Les tourbillons cellulaire dans nappe liquide transportant de la chaleur pur convections en règime permanent. Rev. Gen. Sci. Pures Appl. Bull. Assoc. 11, 12611271, 13091328.Google Scholar
Buell, J. C. & Catton, I. 1983 The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below. J. Heat Transfer 105, 255260.Google Scholar
Catton, I. & Edwards, D. K. 1967 Effect of side walls on natural convection between horizontal plates heated from below. Trans. ASME C: J. Heat Transfer 89, 295299.Google Scholar
Chandrasekhar, R. S. 1961 Hydromagnetic and Hydrodynamic Stability. Oxford University Press.
Charlson, G. S. & Sani, R. L. 1971 On thermoconvective instability in a bounded cylindrical fluid layer. Intl J. Heat Mass Transfer 14, 21572160.Google Scholar
Clever, R. M. & Busse, F. H. 1981 Low-Prandtl-number convection in a layer heated from below. J. Fluid Mech. 102, 6174.Google Scholar
Crespo, E., Bontoux, P., Smutek, C., Roux, B., Harding, G., Sani, R. L. & Rosenberger, F. 1987 Three-dimensional simulations of convective regimes in cylindrical ampoules. Comparisons with theoretical analysis and experiments. Proc. 6th Europ. Symp. on Material Sciences under Microgravity Conditions, Bordeaux, France, 2–5 Dec. 1986 (ESA SP-256, February 1987).
Douglas, J. & Gunn, J. 1964 A general formulation of Alternating Direction Methods. Numer. Maths 6, 428453.Google Scholar
Fauve, S. & Libchaber, A. 1984 Rayleigh-Bénard experiment in a low Prandtl number fluid, mercury. In Chaos and Order in Nature (ed. H. Haken), pp. 2535. Springer.
Gershuni, G. Z. & Zhukhovitskii, E. M. 1976 Convective Stability of Incompressible Fluids. Keterpress Enterprises.
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces. Phys. Fluids 8, 21832189.Google Scholar
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 Axisymmetric convection in a cylinder. J. Fluid Mech. 73, 353388.Google Scholar
Kirchartz, K. R. & Oertel, H. 1988 Three-dimensional convection in rectangular boxes. J. Fluid Mech. 192, 249286.Google Scholar
Krishnamurti, R. 1973 Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285303.Google Scholar
Kyr, P. 1978 Konvektion in Schmelzen mit kleiner Prandtlzahl bei Vielfachen der Erdbeschleunigung. Diplomarbeit, Universität Erlangen, FRG.
Liang, S. F., Vidal, A. & Acrivos, A. 1969 Buoyancy-driven convection in cylindrical geometries J. Fluid Mech. 36, 239256.Google Scholar
Mitchell, W. T. & Quinn, J. A. 1966 Thermal convection in a completely confined fluid layer. AIChE J. 12, 11161124.Google Scholar
Müller, G. 1988 Crystals – Growth, Properties and Applications. Vol. 12: Convection and Inhomogeneties in Crystal Growth from the Melt. Springer.
Müller, G., Neumann, G. & Weber, W. 1984 Natural convection in vertical Bridgman configurations. J. Cryst. Growth 70, 7893.Google Scholar
Neumann, G. 1986 Berechnung der thermischen Auftriebskonvektion in Modellsystemen zur Kristallzüchtung. Dissertation, Universität Erlangen, FRG.
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere.
Piacsek, S. A. & Williams, G. P. 1970 Conservation properties of convection difference schemes. J. Comp. Phys. 6, 392405.Google Scholar
Rosenblat, S. 1982 Thermal convection in a vertical circular cylinder. J. Fluid Mech. 122, 395410.Google Scholar
Sackinger, P. A., Brown, R. A., Neumann, G. & Müller, G. 1984 Eigenfunction expansions for nonlinear convection in a vertical cylinder heated from below. Bull. Am. Phys. Soc. 29, 1523.Google Scholar
Schlüter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.Google Scholar
Weber, W. 1988 Untersuchung der thermischen Auftriebskonvektion in Modellsystemen zur Kristallzüchtung bei normaler und erhöhter Schwerkraft. Dissertation, Universität Erlangen, FRG.
Williams, G. P. 1969 Numerical integration of the three-dimensional Navier-Stokes equations for incompressible flow. J. Fluid Mech. 37, 727750.Google Scholar
Yamaguchi, Y., Chang, C. J. & Brown, R. A. 1984 Multiple buoyancy-driven flows in a vertical cylinder heated from below.. Phil. Trans. R. Soc. Lond. A 312, 519552.Google Scholar
Zierep, J. 1963 Zur Theorie der Zellularkonvektion: Zellular-Konvektionsströmungen in Gefäßen endlicher horizontaler Ausdehnung. Beitr. Z. Phys. Atmos. 36, 7076.Google Scholar