Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T17:03:33.284Z Has data issue: false hasContentIssue false

Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix

Published online by Cambridge University Press:  18 December 2013

Piotr Szymczak*
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-618, Warsaw, Poland
Anthony J. C. Ladd
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611-6005, USA
*
Email address for correspondence: [email protected]

Abstract

A reactive fluid dissolving a uniform porous material triggers an instability in the dissolution front, leading to spontaneous formation of pronounced well-spaced channels in the surrounding rock matrix. The concentration field within the dissolving region contains two different length scales, upstream (no reaction) and downstream of the front position. Previous investigations of the reactive-infiltration instability have considered one or other of the scales to be dominant, leading to rather different conclusions. Here we describe a more general linear stability analysis which includes both length scales simultaneously. We show how previous work corresponds to special cases of our more general analysis and obtain closed-form solutions for small permeability gradients.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, E., Whitehead, J., Kelemen, P. & Spiegelman, M. 1995 Channeling instability of upwelling melt in the mantle. J. Geophys. Res. 100, 433455.Google Scholar
Bear, J. 1961 On the tensor form of dispersion in porous media. J. Geophys. Res. 66, 11851197.CrossRefGoogle Scholar
Boyd, J. P. 1987 Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70, 6388.CrossRefGoogle Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Chadam, D., Hoff, D., Merino, E., Ortoleva, P. & Sen, A. 1986 Reactive infiltration instabilities. J. Appl. Maths 36, 207221.Google Scholar
Chadam, J., Ortoleva, P., Qin, Y. & Stamicar, R. 2001 The effect of hydrodynamic dispersion on reactive flows in porous media. Euro. J. Appl. Maths 12, 557569.CrossRefGoogle Scholar
Daccord, G. & Lenormand, R. 1987 Fractal patterns from chemical dissolution. Nature 325, 4143.CrossRefGoogle Scholar
Dahlkamp, F. J. 2009 Uranium Deposits of the World. Springer.CrossRefGoogle Scholar
Daines, M. J. & Kohlstedt, D. L. 1994 The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys. Res. Lett. 21, 145148.CrossRefGoogle Scholar
De Wit, A., Eckert, K. & Kalliadasis, S. 2012 Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities. Chaos 22, 037101.CrossRefGoogle Scholar
De Wit, A. & Homsy, G. M. 1999 Viscous fingering in reaction–diffusion systems. J. Chem. Phys. 110, 86638675.CrossRefGoogle Scholar
Fogler, H. S. & McCune, C. C. 1976 On the extension of the model of matrix acid stimulation to different sandstones. AIChE J. 22, 799805.CrossRefGoogle Scholar
Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D. & Quintard, M. 2002 On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213254.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1994 Tables of Integrals, Series, and Products, 5th edn. Academic.Google Scholar
Groves, C. G. & Howard, A. D. 1994 Early development of karst systems. I. Preferential flow path enlargement under laminar flow. Water Resour. Res. 30, 28372846.CrossRefGoogle Scholar
Hinch, E. J. & Bhatt, B. S. 1990 Stability of an acid front moving through porous rock. J. Fluid Mech. 212, 279288.CrossRefGoogle Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.CrossRefGoogle Scholar
Kelemen, P., Whitehead, J., Aharonov, E. & Jordahl, K. 1995 Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J. Geophys. Res. 100, 475496.CrossRefGoogle Scholar
Lake, L., Bryant, S. & Araque-Martinez, A. 2002 Geochemistry and Fluid Flow. Elsevier.Google Scholar
Lichtner, P. C. 1988 The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous media. Geochim. Cosmochim. Acta 52, 143165.CrossRefGoogle Scholar
Noiriel, C., Gouze, P. & Bernard, D. 2004 Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys. Res. Lett. 31, L24603.CrossRefGoogle Scholar
Noiriel, C., Luquot, L., Madé, B., Raimbault, L., Gouze, P. & van der Lee, J. 2009 Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265, 160170.CrossRefGoogle Scholar
Ortoleva, P. J. 1994 Geochemical Self-organization. Oxford University Press.CrossRefGoogle Scholar
Ortoleva, P., Chadam, J., Merino, E. & Sen, A. 1987a Geochemical self-organization II: the reactive-infiltration instability. Am. J. Sci. 287, 10081040.CrossRefGoogle Scholar
Ortoleva, P., Merino, E., Moore, C. & Chadam, J. 1987b Geochemical self-organization I. Reaction-transport feedbacks and modelling approach. Am. J. Sci. 287, 9791007.CrossRefGoogle Scholar
Phillips, O. M. 1990 Flow-controlled reactions in rock fabrics. J. Fluid Mech. 212, 263278.CrossRefGoogle Scholar
Pollok, K., Putnis, C. V. & Putnis, A. 2011 Mineral replacement reactions in solid solution-aqueous solution systems: volume changes, reactions paths and end-points using the example of model salt systems. Am. J. Sci. 311, 211236.CrossRefGoogle Scholar
Rowan, G. 1959 Theory of acid treatment of limestone formations. J. Inst. Pet. 45, 321334.Google Scholar
Sherwood, J. D. 1987 Stability of a plane reaction front in a porous medium. Chem. Engng Sci. 42, 18231829.CrossRefGoogle Scholar
Spiegelman, M., Kelemen, P. & Aharonov, E. 2001 Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactable media. J. Geophys. Res. 106, 20612077.CrossRefGoogle Scholar
Steefel, C. I. & Lasaga, A. C. 1990 Evolution of dissolution patterns. In Chemical Modelling of Aqueous Systems II (ed. Melchior, D. C. & Bassett, R. L.), pp. 212225. American Chemical Society.CrossRefGoogle Scholar
Szymczak, P. & Ladd, A. J. C. 2006 A network model of channel competition in fracture dissolution. Geophys. Res. Lett. 33, L05401.CrossRefGoogle Scholar
Szymczak, P. & Ladd, A. J. C. 2011a The initial stages of cave formation: beyond the one-dimensional paradigm. Earth Planet. Sci. Lett. 301, 424432.CrossRefGoogle Scholar
Szymczak, P. & Ladd, A. J. C. 2011b Instabilities in the dissolution of a porous matrix. Geophys. Res. Lett. 38, L07403.CrossRefGoogle Scholar
Szymczak, P. & Ladd, A. J. C. 2012 Reactive infiltration instabilities in rocks. Fracture dissolution. J. Fluid Mech. 702, 239264.CrossRefGoogle Scholar
Szymczak, P. & Ladd, A. J. C. 2013 Interacting length scales in the reactive-infiltration instability. Geophys. Res. Lett. 40, 30363041.CrossRefGoogle Scholar
Wangen, M. 2013 Stability of reaction-fronts in porous media. Appl. Math. Model. 37, 48604873.CrossRefGoogle Scholar
Zhao, C., Hobbs, B. E. & Ord, A. 2013 Theoretical analyses of acidization dissolution front instability in fluid-saturated carbonate rocks. Intl J. Numer. Anal. Meth. Geomech. 37, 20842105.CrossRefGoogle Scholar
Supplementary material: File

Szymczak supplementary material

Supplementary data files

Download Szymczak supplementary material(File)
File 109.8 KB