Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T05:12:18.587Z Has data issue: false hasContentIssue false

Pressure jump interface law for the Stokes–Darcy coupling: confirmation by direct numerical simulations

Published online by Cambridge University Press:  12 September 2013

T. Carraro
Affiliation:
Institute for Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany
C. Goll
Affiliation:
Institute for Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany
A. Marciniak-Czochra
Affiliation:
Institute for Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany Bioquant, Heidelberg University, 69120 Heidelberg, Germany
A. Mikelić*
Affiliation:
Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

It is generally accepted that the effective velocity of a viscous flow over a porous bed satisfies the Beavers–Joseph slip law. To the contrary, the interface law for the effective stress has been a subject of controversy. Recently, a pressure jump interface law has been rigourously derived by Marciniak-Czochra and Mikelić. In this paper, we provide a confirmation of the analytical result using direct numerical simulation of the flow at the microscopic level. To the best of the authors’ knowledge, this is the first numerical confirmation of the pressure interface law in the literature.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bangerth, W., Hartmann, R. & Kanschat, G. 2007 deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33 (4), 24/124/27.Google Scholar
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.Google Scholar
Becker, R. & Rannacher, R. 2001 An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10, 1102.Google Scholar
Beliaev, A. Yu. & Kozlov, S. M. 1996 Darcy equation for random porous media. Commun. Pure Appl. Maths 49 (1), 134.Google Scholar
Braack, M. & Richter, T. 2006 Solutions of 3D Navier–Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35 (4), 372392.Google Scholar
Brenner, S. C. & Scott, L. R 2002 The Mathematical Theory of Finite Element Methods, 2nd edn. Springer.Google Scholar
Brezzi, F. & Fortin, M. 1991 Mixed and Hybrid Finite Element Methods. Springer.Google Scholar
Ciarlet, P. G. 2002 Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Dagan, G. 1981 The generalization of Darcy’s law for non-uniform flows. Water Resour. Res. 15 (2), 17.Google Scholar
Ene, H. I. & Sánchez-Palencia, E. 1975 Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. J. Méc. 14, 73108.Google Scholar
Goll, C., Wick, T. & Wollner, W. 2012 Dopelib: differential equations and optimization environment; a goal oriented software library for solving pdes and optimization problems with PDEs, (submitted), www.dopelib.net.Google Scholar
Jäger, W. & Mikelić, A. 1996 On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser 23 (3), 403465.Google Scholar
Jäger, W. & Mikelić, A. 2000 On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Maths 60 (4), 11111127.Google Scholar
Jäger, W. & Mikelić, A. 2009 Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Trans. Porous Med. 78 (3), 489508.Google Scholar
Jäger, W., Mikelić, A. & Neuss, N. 2001 Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22 (6), 20062028.Google Scholar
Kaviany, M. 1995 Principles of Heat Transfer in Porous Media. Springer.Google Scholar
Larson, R. E. & Higdon, J. J. L. 1986 Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow. J. Fluid Mech. 166 (1), 449472.CrossRefGoogle Scholar
Larson, R. E. & Higdon, J. J. L. 1987 Microscopic flow near the surface of two-dimensional porous media. Part 2. Tranverse flow. J. Fluid Mech. 178 (1), 119136.Google Scholar
Levy, T. & Sánchez-Palencia, E. 1975 On boundary conditions for fluid flow in porous media. Intl J. Engng Sci. 13 (11), 923940.CrossRefGoogle Scholar
Liu, Q. & Prosperetti, A. 2011 Pressure-driven flow in a channel with porous walls. J. Fluid Mech. 679, 77100.CrossRefGoogle Scholar
Marciniak-Czochra, A. & Mikelić, A. 2012 Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization. Multiscale Model. Simul. 10 (2), 285305.Google Scholar
Nield, D. 2009 The Beavers–Joseph boundary condition and related matters: a historical and critical note. Trans. Porous Med. 78, 537540.CrossRefGoogle Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995a Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Intl J. Heat Mass Transfer 38 (14), 26352646.Google Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995b Momentum transfer at the boundary between a porous medium and a homogeneous fluid – II. Comparison with experiment. Intl J. Heat Mass Transfer 38 (14), 26472655.Google Scholar
Rannacher, R. 1999 Adaptive Galerkin finite element methods for partial differential equations. J. Comput. Appl. Maths 128, 205233.Google Scholar
Rannacher, R. 2010 Adaptive fe eigenvalue computation with applications to hydrodynamic stability. In Advances in Mathematical Fluid Mechanics (ed. Rannacher, R. & Sequeira, A.), pp. 425450. Springer.Google Scholar
Richter, T. 2005 Parallel multigrid method for adaptive finite elements with application to 3D flow problems. PhD thesis, Mathematisch-Naturwissenschaftliche Gesamtfakultät, Universität Heidelberg, http://www.ub.uni-heidelberg.de/archiv/5743.Google Scholar
Saffman, P. G. 1971 On the boundary condition at the interface of a porous medium. Stud. Appl. Maths 1, 93101.Google Scholar
Sahraoui, M. & Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at interface of porous, plain media. Intl J. Heat Mass Transfer 35 (4), 927943.CrossRefGoogle Scholar
Tartar, L. 1980 Convergence of the Homogenization Process. Springer.Google Scholar
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Med. 1 (1), 325.Google Scholar
Zeytounian, R. 2002 Asymptotic Modelling of Fluid Flow Phenomena. Springer.Google Scholar