Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T19:18:37.749Z Has data issue: false hasContentIssue false

Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency

Published online by Cambridge University Press:  21 June 2018

Nitin B. George*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Madras 600 036, India
Vishnu R. Unni
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Madras 600 036, India
Manikandan Raghunathan
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Madras 600 036, India
R. I. Sujith
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Madras 600 036, India
*
Email address for correspondence: [email protected]

Abstract

Gas turbine engines are prone to the phenomenon of thermoacoustic instability, which is highly detrimental to their components. Recently, in turbulent combustors, it was observed that the transition to thermoacoustic instability occurs through an intermediate state, known as intermittency, where the system exhibits epochs of ordered behaviour, randomly appearing amidst disordered dynamics. We investigate the onset of intermittency and the ensuing self-organization in the reactive flow field, which, under certain conditions, could result in the transition to thermoacoustic instability. We characterize this transition from a state of disordered and incoherent dynamics to a state of ordered and coherent dynamics as pattern formation in the turbulent combustor, utilizing high-speed flame images representing the distribution of the local heat release rate fluctuations, flow field measurements (two-dimensional particle image velocimetry), unsteady pressure and global heat release rate signals. Separately, through planar Mie scattering images using oil droplets, the collective behaviour of small scale vortices interacting and resulting in the emergence of large scale coherent structures is illustrated. We show the emergence of spatial patterns using statistical tools used to study transitions in other pattern forming systems. In this paper, we propose that the intertwined and highly intricate interactions between the wide spatio-temporal scales in the flame, the flow and the acoustics are through pattern formation.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, P. & Borley, N. R. 1999 The Self-Made Tapestry: Pattern Formation in Nature, vol. 198. Oxford University Press.Google Scholar
Bayliss, A. & Matkowsky, B. J. 1991 Bifurcation, pattern formation and chaos in combustion. In Dynamical Issues in Combustion Theory, pp. 135. Springer.Google Scholar
Busse, F. H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41 (12), 19291967.Google Scholar
Chaudhuri, S. 2015 Life of flame particles embedded in premixed flames interacting with near isotropic turbulence. Proc. Combust. Inst. 35 (2), 13051312.Google Scholar
Cliff, A. D. & Ord, J. K. 1973 Spatial Autocorrelation, vol. 5. Pion.Google Scholar
Croquette, V. 1989a Convective pattern dynamics at low Prandtl number: part i. Contemp. Phys. 30 (2), 113133.Google Scholar
Croquette, V. 1989b Convective pattern dynamics at low Prandtl number: part ii. Contemp. Phys. 30 (3), 153171.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1994 Spatiotemporal chaos. Science 263 (5153), 15691570.Google Scholar
Culick, F. E. C. & Yang, V. 1995 Overview of combustion instabilities in liquid-propellant rocket engines. Liq. Rocket Engine Combust. Instability 169, 337.Google Scholar
Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. 2010 Spatial correlation as leading indicator of catastrophic shifts. Theoret. Ecol. 3 (3), 163174.Google Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.Google Scholar
Ducruix, S., Schuller, T., Durox, D. & Candel, S. 2003 Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J. Propul. Power 19 (5), 722734.Google Scholar
Eckart, C. 1948 An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res. 7 (3), 265275.Google Scholar
Field, M. & Golubitsky, M. 2009 Symmetry in Chaos: a Search for Pattern in Mathematics, Art, and Nature. SIAM.Google Scholar
George, N. B., Unni, V. R., Raghunathan, M. & Sujith, R. I. 2018 Spatiotemporal dynamics during the transition to thermoacoustic instability: effect of varying turbulence intensities. Intl J. Spray Combust. Dyn., doi:10.1177/1756827717750073.Google Scholar
Getis, A. 2009 Spatial weights matrices. Geograph. Anal. 41 (4), 404410.Google Scholar
Getis, A. & Aldstadt, J. 2010 Constructing the spatial weights matrix using a local statistic. In Perspectives on Spatial Data Analysis, pp. 147163. Springer.Google Scholar
Gollub, J. P. & Langer, J. S. 1999 Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71 (2), S396S403.Google Scholar
Gunaratne, G. H., Ouyang, Q. & Swinney, H. L. 1994 Pattern formation in the presence of symmetries. Phys. Rev. E 50 (4), 28022820.Google Scholar
Gurubaran, K.2005 Behaviour of sprays in acoustic fields. Master’s thesis, Aerospace Engineering department, IIT Madras.Google Scholar
Guttal, V. & Jayaprakash, C. 2009 Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theoret. Ecol. 2 (1), 312.Google Scholar
Ho, C. M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.Google Scholar
Jakubith, S., Rotermund, H. H., Engel, W., Von Oertzen, A. & Ertl, G. 1990 Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65 (24), 30133016.Google Scholar
Kéfi, S., Guttal, V., Brock, W. A., Carpenter, S. R., Ellison, A. M., Livina, V. N., Seekell, D. A., Scheffer, M., van Nes, E. H. & Dakos, V. 2014 Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9 (3), e92097.Google Scholar
Kheirkhah, S., Geraedts, B. D., Saini, P., Venkatesan, K. & Steinberg, A. M. 2016 Non-stationary local thermoacoustic phase relationships in a gas turbine combustor. Proc. Combust. Inst. 36 (3), 38733880.Google Scholar
Kheirkhah, S. & Gülder, Ö. L. 2013 Turbulent premixed combustion in v-shaped flames: characteristics of flame front. Phys. Fluids 25 (5), 055107.Google Scholar
Kirthy, S. K., Hemchandra, S., Hong, S., Shanbhogue, S. & Ghoniem, A. F. 2016 Role of shear layer instability in driving pressure oscillations in a backward facing step combustor. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, pp. V04BT04A010V04BT04A010. American Society of Mechanical Engineers.Google Scholar
Knobloch, E. & Moehlis, J. 1999 Bursting mechanisms for hydrodynamical systems. In Pattern Formation in Continuous and Coupled Systems, pp. 157174. Springer.Google Scholar
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Engng Gas Turbines Power 132 (6), 061503.Google Scholar
Lieuwen, T. & Zinn, B. T. 1998 The role of equivalence ratio oscillations in driving combustion instabilities in low nox gas turbines. In Symposium (International) on Combustion, vol. 27, pp. 18091816. Elsevier.Google Scholar
Lieuwen, T. & Zinn, B. T. 2000 Application of multipole expansions to sound generation from ducted unsteady combustion processes. J. Sound Vib. 235 (3), 405414.Google Scholar
Lieuwen, T. C. 2002 Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propul. Power 18 (1), 6167.Google Scholar
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.Google Scholar
Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J. et al. 2007 Complexity of coupled human and natural systems. Science 317 (5844), 15131516.Google Scholar
Manneville, P. 2010 Instabilities, Chaos and Turbulence, vol. 1. World Scientific.Google Scholar
Manoharan, K. & Hemchandra, S. 2015 Absolute/convective instability transition in a backward facing step combustor: fundamental mechanism and influence of density gradient. J. Engng Gas Turbines Power 137 (2), 021501.Google Scholar
Matveev, K. I. & Culick, F. E. C. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175 (6), 10591083.Google Scholar
McManus, K. R., Poinsot, T. & Candel, S. M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19 (1), 129.Google Scholar
Meron, E. 2016 Pattern formation a missing link in the study of ecosystem response to environmental changes. Math. Biosci. 271, 118.Google Scholar
Moehlis, J. & Knobloch, E. 1998 Forced symmetry breaking as a mechanism for bursting. Phys. Rev. Lett. 80 (24), 53295332.Google Scholar
Mondal, S., Unni, V. R. & Sujith, R. I. 2017 Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659681.Google Scholar
Moran, P. A. P. 1950 Notes on continuous stochastic phenomena. Biometrika 37 (1/2), 1723.Google Scholar
Nair, V.2014 Role of intermittency in the onset of combustion instability. PhD thesis, IIT Madras.Google Scholar
Nair, V. & Sujith, R. I. 2014 Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635655.Google Scholar
Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor of impending combustion instability. Intl J. Spray Combust. Dyn. 5 (4), 273290.Google Scholar
Nair, V., Thampi, G. & Sujith, R. I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.Google Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2009 Dynamic phase converter for passive control of combustion instabilities. Proc. Combust. Inst. 32 (2), 31633170.Google Scholar
Paschereit, C. O. & Gutmark, E. 2006 Control of high-frequency thermoacoustic pulsations by distributed vortex generators. AIAA J. 44 (3), 550557.Google Scholar
Paschereit, C. O., Gutmark, E. & Weisenstein, W. 2000 Excitation of thermoacoustic instabilities by interaction of acoustics and unstable swirling flow. AIAA J. 38 (6), 10251034.Google Scholar
Pawar, S. A., Seshadri, A., Unni, V. R. & Sujith, R. I. 2017 Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech. 827, 664693.Google Scholar
PIVview2014 Pivtec gmbh. Homepage: http://www.pivtec.com.Google Scholar
Poinsot, T. J., Haworth, D. C. & Bruneaux, G. 1993 Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95 (1–2), 118132.Google Scholar
Poinsot, T. J., Trouve, A. C., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.Google Scholar
Raffel, M., Willert, C. E. & Kompenhans, J. 2007 Particle Image Velocimetry: a Practical Guide. Springer Science and Business Media.Google Scholar
Renard, P. H., Thevenin, D., Rolon, J. C. & Candel, S. 2000 Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26 (3), 225282.Google Scholar
Rüdiger, S. & Knobloch, E. 2003 Mode interaction in rotating Rayleigh–Bénard convection. Fluid Dyn. Res. 33 (5), 477492.Google Scholar
Samarasinghe, J., Culler, W., Quay, B. D., Santavicca, D. A. & O’Connor, J. 2017 The effect of fuel staging on the structure and instability characteristics of swirl-stabilized flames in a lean premixed multinozzle can combustor. J. Engng Gas Turbines Power 139 (12), 121504.Google Scholar
Sánchez-Morcillo, V. J., Martínez-Mora, J., Pérez-Arjona, I., Espinosa, V. & Alonso, P. 2010 Self-organization of ultrasound in viscous fluids. Europhys. Lett. 92 (1), 10003.Google Scholar
Schadow, K. C. & Gutmark, E. 1992 Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18 (2), 117132.Google Scholar
Schadow, K. C., Gutmark, E., Parr, T. P., Parr, D. M., Wilson, K. J. & Crump, J. E. 1989 Large-scale coherent structures as drivers of combustion instability. Combust. Sci. Technol. 64 (4–6), 167186.Google Scholar
Schram, C., Rambaud, P. & Riethmuller, M. L. 2004 Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Exp. Fluids 36 (2), 233245.Google Scholar
Schram, C. & Riethmuller, M. L. 2001 Vortex ring evolution in an impulsively started jet using digital particle image velocimetry and continuous wavelet analysis. Meas. Sci. Technol. 12 (9), 14131421.Google Scholar
Seshadri, A., Nair, V. & Sujith, R. I. 2016 A reduced-order deterministic model describing an intermittency route to combustion instability. Combust. Theor. Model. 20 (3), 441456.Google Scholar
Shanbhogue, S., Shin, D.-H., Hemchandra, S., Plaks, D. & Lieuwen, T. C. 2009 Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32 (2), 17871794.Google Scholar
Shin, D.-H. & Lieuwen, T. C. 2013 Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech. 721, 484513.Google Scholar
Singh, J., Belur, V. R., Chaudhuri, S. & Sujith, R. I. 2017 Network structure of turbulent premixed flames. Chaos 27 (4), 043107.Google Scholar
Sirignano, W. A. 2010 Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press.Google Scholar
Sivashinsky, G. I. 1983 Instabilities, pattern formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15 (1), 179199.Google Scholar
Staliunas, K. & Sanchez-Morcillo, V. J. 2003 Transverse Patterns in Nonlinear Optical Resonators, vol. 183. Springer Science and Business Media.Google Scholar
Sujith, R. I., Juniper, M. P. & Schmid, P. J. 2016 Non-normality and nonlinearity in thermoacoustic instabilities. Intl J. Spray Combust. Dyn. 8 (2), 119146.Google Scholar
Tony, J., Gopalakrishnan, E. A., Sreelekha, E. & Sujith, R. I. 2015 Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92 (6), 062902.Google Scholar
Unni, V. R. & Sujith, R. I. 2015 Multifractal characteristics of combustor dynamics close to lean blowout. J. Fluid Mech. 784, 3050.Google Scholar
Unni, V. R. & Sujith, R. I. 2017 Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst. 36 (3), 37913798.Google Scholar
Uranakara, H. A., Chaudhuri, S., Dave, H. L., Arias, P. G. & Im, H. G. 2016 A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames. Combust. Flame 163, 220240.Google Scholar
Valverde, J. M. 2015 Pattern-formation under acoustic driving forces. Contemp. Phys. 56 (3), 338358.Google Scholar
Varun, A. V., Balasubramanian, K. & Sujith, R. I. 2008 An automated vortex detection scheme using the wavelet transform of the d2 field. Exp. Fluids 45 (5), 857868.Google Scholar
Vollmers, H. 2001 Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas. Sci. Technol. 12 (8), 11991207.Google Scholar
Wallace, J. M. 2014 Space–time correlations in turbulent flow: a review. Theoret. Appl. Mech. Lett. 4 (2), 022003.Google Scholar
Zhang, Q., Shanbhogue, S. J. & Lieuwen, T. 2010 Dynamics of premixed H2/CH4 flames under near blowoff conditions. J. Engng Gas Turbines Power 132 (11), 111502.Google Scholar