Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T20:48:07.045Z Has data issue: false hasContentIssue false

Oscillations of drops in zero gravity with weak viscous effects

Published online by Cambridge University Press:  21 April 2006

T. S. Lundgren
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
N. N. Mansour
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

Nonlinear oscillations and other motions of large axially symmetric liquid drops in zero gravity are studied numerically by a boundary-integral method. The effect of small viscosity is included in the computations by retaining first-order viscous terms in the normal stress boundary condition. This is accomplished by making use of a partial solution of the boundary-layer equations which describe the weak vortical surface layer. Small viscosity is found to have a relatively large effect on resonant-mode coupling phenomena.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Washington, DC: Government Printing Office.
Alonzo, C. T. 1974 The dynamics of colliding and oscillating drops. In Proc. Intl Colloq. on Drops and Bubbles (ed. D. J. Collins, M. S. Plesset & M. M. Saffren), pp. 139157. Jet Propulsion Laboratory.
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1980 Vortex simulations of the Rayleigh-Taylor instability. Phys. Fluids 23, 14851490.Google Scholar
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477501.Google Scholar
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1984 Boundary integral methods for axisymmetric and three-dimensional Rayleigh-Taylor instability problems. Physica 194, 1931.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Benner, R. E. 1983 Equilibria, stability and bifurcations in the physics of fluid interfaces. Ph.D. thesis, University of Minnesota, Minneapolis.
Carruthers, J. R. & Testardi, L. R. 1983 Materials processing in the reduced-gravity of space. Ann. Rev. Mater. Sci. 13, 247278.Google Scholar
de Bernadinis, B. & Moore, D. W. 1985 A ring-vortex representation of an axi-symmetric vortex sheet. In 1985 ICASE Workshop on Vortex Dominated Flows, 3343.
Dommermuth, D. G. & Yue, D. K. P. 1987 Numerical simulations of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 178, 195219.Google Scholar
Foote, G. B. 1973 A numerical method for studying simple drop behavior: simple oscillation. J. Comp. Phys. 11, 507530.Google Scholar
Fromm, J. E. 1984 Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28, 322333.Google Scholar
Hasegawa, H. & Yamashita, S. 1986 Finite amplitude waves on an elastic plate horizontally separating two different fluid streams. Bull. JSME 29, 787784.Google Scholar
Jaswon, M. A. & Symm, G. T. 1977 Integral Equation Methods in Potential Theory and Elastostatics. Academic.
Kellogg, O. D. 1953 Foundations of Potential Theory. Dover.
Kraszny, R. 1986 A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 6593.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 126.Google Scholar
Miksis, M. J., Vanden-Broeck, J.-M. & Keller, J. B. 1982 Rising bubbles. J. Fluid Mech. 123, 3141.Google Scholar
Miller, C. A. & Scriven, L. E. 1968 The oscillations of a droplet immersed in another fluid. J. Fluid Mech. 32, 417435.Google Scholar
Moore, D. W. 1962 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.Google Scholar
Moore, D. W. 1982 A point vortex method applied to interfacial waves. In Vortex Motion (ed. H. G. Hornung & E.-A. Muller). pp. 97105.
Natarajan, R. & Brown, R. A. 1986 Quadratic resonance in the three-dimensional oscillations of inviscid drops with surface tension. Phys. Fluids 29, 27882797.Google Scholar
Pullin, D. I. 1982 Numerical studies of surface-tension effects in nonlinear Kelvin-Helmholtz and Rayleigh-Taylor instability. J. Fluid Mech. 119, 507532.Google Scholar
Rayleigh, J. W. S. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Saffren, M., Elleman, D. D. & Rhim, W. K. 1981 Normal modes of a compound drop. In Proc. Second Intl Coll. Drops and Bubbles (ed. D. H. Lecroissette), pp. 714.
Trinh, E. & Wang, T. G. 1982 Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122, 315338.Google Scholar
Trinh, E., Zwern, A. & Wang, T. G. 1982 An experimental study of small-amplitude drop oscillations in immiscible systems. J. Fluid Mech. 115, 453474.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.Google Scholar
Weatherburn, C. E. 1927 Differential Geometry of Three Dimensions. Cambridge University Press.