Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:53:43.608Z Has data issue: false hasContentIssue false

On the connection between the magneto-elliptic and magneto-rotational instabilities

Published online by Cambridge University Press:  30 March 2012

Krzysztof A. Mizerski*
Affiliation:
Department of Mechanics and Physics of Fluids, Institute of Fundamental and Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106, Poland
Wladimir Lyra
Affiliation:
Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192, USA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
*
Email address for correspondence: [email protected]

Abstract

It has recently been suggested that the magneto-rotational instability (MRI) is a limiting case of the magneto-elliptic instability (MEI). This limit is obtained for horizontal modes in the presence of rotation and an external vertical magnetic field, when the aspect ratio of the elliptic streamlines tends to infinite. In this paper we unveil the link between these previously unconnected mechanisms, explaining both the MEI and the MRI as different manifestations of the same magneto-elliptic-rotational instability (MERI). The growth rates are found and the influence of the magnetic and rotational effects is explained, in particular the effect of the magnetic field on the range of negative Rossby numbers at which the horizontal instability is excited. Furthermore, we show how the horizontal rotational MEI in the rotating shear flow limit is linked to the MRI by the use of the local shearing box model, typically used in the study of accretion discs. In such a limit the growth rates of the two instability types coincide for any power-law-type background angular velocity radial profile with negative exponent corresponding to the value of the Rossby number of the rotating shear flow. The MRI requirement for instability is that the background angular velocity profile is a decreasing function of the distance from the centre of the disc, which corresponds to the horizontal rotational MEI requirement of negative Rossby numbers. Finally a physical interpretation of the horizontal instability, based on a balance between the strain, the Lorentz force and the Coriolis force, is given.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Armitage, P. J. 1998 Turbulence and angular momentum transport in global accretion disk simulation. Astrophys. J. 501, L189.CrossRefGoogle Scholar
2. Bajer, K. & Mizerski, K. A. 2011 Elliptical flow instability triggered by a magnetic field. Phys. Rev. Lett. (submitted).Google Scholar
3. Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. Part 1. Linear analysis. Astrophys. J. 376, 214222.CrossRefGoogle Scholar
4. Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 153.CrossRefGoogle Scholar
5. Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17), 21602163.CrossRefGoogle ScholarPubMed
6. Chandrasekhar, S. 1960 The stability of non-dissipative couette flow in hydromagnetics. Proc. Natl Acad. Sci. 46 (2), 253257.CrossRefGoogle ScholarPubMed
7. Eloy, C., Le Gal, P. & Le Dizés, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.CrossRefGoogle Scholar
8. Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. J. & Henning, Th. 2011 Turbulence and steady flows in three-dimensional global stratified magnetohydrodynamic simulations of accretion disks. Astrophys. J. 735, 122.CrossRefGoogle Scholar
9. Fromang, S. & Nelson, R. P. 2006 Global MHD simulations of stratified and turbulent protoplanetary discs. I. Model properties. Astron. Astrophys. 457, 343358.CrossRefGoogle Scholar
10. Hawley, J. F. 2000 Global magnetohydrodynamical simulations of accretion tori. Astrophys. J. 528, 462479.CrossRefGoogle Scholar
11. Hawley, J. F. & Balbus, S. A. 1991 A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. Astrophys. J. 376, 223233.CrossRefGoogle Scholar
12. Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1995 Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440, 742763.CrossRefGoogle Scholar
13. Herreman, W., Cebron, D., Le Dizés, S. & Le Gal, P. 2010 Elliptical instability in rotating cylinders: liquid metal experiments under imposed magnetic field. J. Fluid Mech. 661, 130158.CrossRefGoogle Scholar
14. Hollerbach, R. & Rüdiger, G. 2005 New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95, 124501:1–4.CrossRefGoogle ScholarPubMed
15. Kerswell, R. R. 1993 Elliptical instabilities of stratified, hydromagnetic waves. Geophys. Astrophys. Fluid Dyn. 71, 105143.CrossRefGoogle Scholar
16. Kida, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan 50, 35173520.CrossRefGoogle Scholar
17. Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Proc. USSR Acad. Sci. 30, 301305.Google Scholar
18. Lebovitz, N. R. & Zweibel, E. 2004 Magnetoelliptic instabilities. Astrophys. J. 609, 301312.CrossRefGoogle Scholar
19. Lesur, G. & Papaloizou, J. C. B. 2009 On the stability of elliptical vortices in accretion discs. Astron. Astrophys. 498, 112.CrossRefGoogle Scholar
20. Lyra, W., Johansen, A., Klahr, H. & Piskunov, N. 2008 Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potential on a Cartesian grid and transport of solids. Astron. Astrophys. 479, 883901.CrossRefGoogle Scholar
21. Lyra, W. & Klahr, H. 2011 The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks. Astron. Astrophys. 527, A138.CrossRefGoogle Scholar
22. Miyazaki, T. 1993 Elliptical instability in a stably stratified rotating fluid. Phys. Fluids A 5 (11), 27022709.CrossRefGoogle Scholar
23. Mizerski, K. A. & Bajer, K. 2009 The magnetoelliptic instability of rotating systems. J. Fluid Mech. 632, 401430.CrossRefGoogle Scholar
24. Moffatt, H. K. 2010 Note on the suppression of transient shear-flow instability by a spanwise magnetic field. J. Engng Maths 68, 263268.CrossRefGoogle Scholar
25. Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57 (17), 21572159.CrossRefGoogle Scholar
26. Schaeffer, N. & Le Dizés, S. 2010 Nonlinear dynamics of the elliptic instability. J. Fluid Mech. 646, 471480.CrossRefGoogle Scholar
27. Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J. & Hollerbach, R. 2006 Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502:1–4.CrossRefGoogle Scholar
28. Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. 223, 289343.Google Scholar
29. Terquem, C. & Papaloizou, C. B. 1996 On the stability of an accretion disc containing a toroidal magnetic field. Mon. Not. R. Astron. Soc. 279, 767784.CrossRefGoogle Scholar
30. Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 9, 995.Google Scholar
31. Waleffe, F. 1989 The 3D instability of a strained vortex and its relation to turbulence. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar