Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T05:06:42.227Z Has data issue: false hasContentIssue false

Numerical study of variable density turbulence interaction with a normal shock wave

Published online by Cambridge University Press:  22 September 2017

Yifeng Tian
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
Farhad A. Jaberi*
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
Zhaorui Li
Affiliation:
Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
Daniel Livescu
Affiliation:
CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*
Email address for correspondence: [email protected]

Abstract

Accurate numerical simulations of shock–turbulence interaction (STI) are conducted with a hybrid monotonicity-preserving–compact-finite-difference scheme for a detailed study of STI in variable density flows. Theoretical and numerical assessments of data confirm that all turbulence scales as well as the STI are well captured by the computational method. Linear interaction approximation (LIA) convergence tests conducted with the shock-capturing simulations exhibit a similar trend of converging to LIA predictions to shock-resolving direct numerical simulations (DNS). The effects of density variations on STI are studied by comparing the results corresponding to an upstream multi-fluid mixture with the single-fluid case. The results show that for the current parameter ranges, the turbulence amplification by the normal shock wave is much higher and the reduction in turbulence length scales is more significant when strong density variations exist. Turbulent mixing enhancement by the shock is also increased and stronger mixing asymmetry in the postshock region is observed when there is significant density variation. The turbulence structure is strongly modified by the shock wave, with a differential distribution of turbulent statistics in regions having different densities. The dominant mechanisms behind the variable density STI are identified by analysing the transport equations for the Reynolds stresses, vorticity, normalized mass flux and density specific volume covariance.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445468.Google Scholar
Budzinski, J. M., Zukoski, E. E. & Marble, F. E.1992 Rayleigh scattering measurements of shock enhanced mixing. AIAA Paper 92-3546.Google Scholar
Cook, A. W. & Riley, J. J. 1996 Direct numerical simulation of a turbulent reactive plume on a parallel computer. J. Comput. Phys. 129 (2), 263283.Google Scholar
Gréa, B. J., Burlot, A., Griffond, J. & Llor, A. 2016 Challenging mix models on transients to self-similarity of unstably stratified homogeneous turbulence. J. Fluids Engng 138 (7), 070904.Google Scholar
Hannappel, R. & Friedrich, R. 1995 Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence. Appl. Sci. Res. 54 (3), 205221.CrossRefGoogle Scholar
Jammalamadaka, A., Li, Z. & Jaberi, F. A. 2014 Numerical investigations of shock wave interactions with a supersonic turbulent boundary layer. Phys. Fluids 26 (5), 056101.Google Scholar
Jamme, S., Cazalbou, J.-B., Torres, F. & Chassaing, P. 2002 Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow Turbul. Combust. 68 (3), 227268.Google Scholar
Kim, J. H., Yoon, Y., Jeung, I. S., Huh, H. & Choi, J. Y. 2003 Numerical study of mixing enhancement by shock waves in model scramjet engine. AIAA J. 41 (6), 10741080.Google Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20 (10), 657674.Google Scholar
Larsson, J. 2010 Effect of shock-capturing errors on turbulence statistics. AIAA J. 48 (7), 15541557.Google Scholar
Larsson, J., Bermejo-Moreno, I. & Lele, S. K. 2013 Reynolds- and Mach-number effects in canonical shock–turbulence interaction. J. Fluid Mech. 717, 293321.Google Scholar
Larsson, J. & Lele, S. K. 2009 Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21 (12), 126101.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1993 Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533562.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1997 Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225247.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Li, Z. & Jaberi, F. A. 2012 A high-order finite difference method for numerical simulations of supersonic turbulent flows. Intl J. Numer. Meth. Fluids 68 (6), 740766.CrossRefGoogle Scholar
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2000 Passive-scalar wake behind a line source in grid turbulence. J. Fluid Mech. 416, 117149.Google Scholar
Livescu, D. & Ristorcelli, J. R. 2008 Variable-density mixing in buoyancy-driven turbulence. J. Fluid Mech. 605, 145180.Google Scholar
Livescu, D. & Ristorcelli, J. R. 2009 Mixing asymmetry in variable density turbulence. In Adv. Turbul. XII (ed. Eckhardt, B.), Springer Proceedings in Physics, vol. 132, pp. 545548. Springer.Google Scholar
Livescu, D., Ristorcelli, J. R., Gore, R. A., Dean, S. H., Cabot, W. H. & Cook, A. W. 2009 High-Reynolds number Rayleigh–Taylor turbulence. J. Turbul. 10 (13), 132.Google Scholar
Livescu, D., Ristorcelli, J. R., Petersen, M. R. & Gore, R. A. 2010 New phenomena in variable-density Rayleigh–Taylor turbulence. Phys. Scr. T 142, 014015.Google Scholar
Livescu, D. & Ryu, J. 2016 Vorticity dynamics after the shock–turbulence interaction. Shock Waves 26 (3), 241251.Google Scholar
Lombardini, M., Hill, D. J., Pullin, D. I. & Meiron, D. I. 2011 Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations. J. Fluid Mech. 670, 439480.Google Scholar
Mahesh, K., Lee, S., Lele, S. K. & Moin, P. 1995 The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300, 383407.Google Scholar
Mahesh, K., Lele, S. K. & Moin, P. 1997 The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353379.Google Scholar
Menon, S.1989 Shock-wave-induced mixing enhancement in scramjet combustors. AIAA Paper 89-0104.Google Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A.), pp. 367380. CNRS.Google Scholar
Quadros, R., Sinha, K. & Larsson, J. 2016 Turbulent energy flux generated by shock/homogeneous-turbulence interaction. J. Fluid Mech. 796, 113157.Google Scholar
Ribner, H. S.1954 Convection of a pattern of vorticity through a shock wave. NACA Tech. Rep. TR-1164.Google Scholar
Ristorcelli, J. R. & Blaisdell, G. A. 1997 Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9 (1), 46.Google Scholar
Ryu, J. & Livescu, D. 2014 Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech. 756, R1.Google Scholar
Schwarzkopf, J. D., Livescu, D., Baltzer, J. R., Gore, R. A. & Ristorcelli, J. R. 2016 A two-length scale turbulence model for single-phase multi-fluid mixing. Flow Turbul. Combust. 96 (1), 143.Google Scholar
Suresh, A. & Huynh, H. T. 1997 Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136 (1), 8399.Google Scholar
Tian, Y., Jaberi, F. A., Livescu, D. & Li, Z. 2017 Numerical simulation of multi-fluid shock–turbulence interaction. In AIP Conference Proceedings, Shock Compression of Condensed Matter, vol. 1793, p. 150010. AIP Publishing.Google Scholar
Yang, J., Kubota, T. & Zukoski, E. E. 1993 Applications of shock-induced mixing to supersonic combustion. AIAA J. 31 (5), 854862.Google Scholar
Zabusky, N. J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31 (1), 495536.Google Scholar