Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T04:34:07.169Z Has data issue: false hasContentIssue false

Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder

Published online by Cambridge University Press:  19 April 2006

Ta Phuoc Loc
Affiliation:
Laboratoire d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, C.N.R.S., B.P. 30-91406-Orsay, France

Abstract

The mechanism of the creation of secondary vortices behind an impulsively started circular cylinder is analysed in this paper by a higher order of accuracy numerical method. This is a combination of second-order and fourth-order compact finite difference schemes to resolve complete unsteady Navier–Stokes equations. The fourth-order compact scheme is used to calculate the Poisson equation of the stream function and the second-order alternating direction implicit scheme to resolve the vorticity transport equation.

In particular, the growth of primary and secondary vortices with time is analysed for Reynolds numbers equal to 300, 550 and 1000. A single secondary vortex first appears at a Reynolds number equal to 300 on the surface of the cylinder. At R = 550, this creation is found numerically at dimensionless time t about 2·85, and this single secondary vortex is transformed into a pair of secondary vortices at t about 5. For R = 1000, two single vortices can be observed at t about 2·5, one near the separation point and another more important, easily identified in flow structure. These secondary vortices are transformed into a pair of secondary vortices at t about 4·5.

A numerical analysis of the influence of the grid systems and the time step is also given. All numerical results presented here are compared with experimental visualizations. The comparison is found satisfactory.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasius, H. 1908 Z. angew. Math. Phys. 56, 1.
Collatz, L. 1966 The Numerical Treatment of Differential Equations. Springer.
Collins, W. M. & Dennis, S. C. R. 1973a Quart. J. Mech. Appl. Math. 26, 53.
Collins, W. M. & Dennis, S. C. R. 1973b J. Fluid Mech. 60, 105.
Coutanceau, M. & Bouard, R. 1977 J. Fluid Mech. 79, 257.
Coutanceau, M. & Bouard, R. 1979 C. R. Acad. Sci. Paris, 288, B45.
Daube, O. & Ta Phuoc Loc 1978 J. Méc. 17, 651.
Dennis, S. C. R. & Staniforth, A. N. 1971 Proc. 2nd Int. Conf. on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 8, p. 343. Springer.
Goldstein, S. & Rosenhead, L. 1936 Proc. Camb. Phil. Soc. 32, 392.
Hirsh, R. S. 1975 J. Comp. Phys. 19, 90.
Honji, H. & Taneda, S. 1969 J. Phys. Soc. Japan 27, 1668.
Jain, P. C. & Rao, K. S. 1969 Phys. Fluids Suppl. 12, II 57.
Kawaguti, M. & Jain, P. C. 1966 J. Phys. Soc. Japan 21, 2055.
Orszag, S. A. & Israeli, M. 1974 Ann. Rev. Fluid Mech. 6, 281.
Patel, V. A. 1976 Comp. & Fluids 4, 13.
Payne, R. B. 1958 J. Fluid Mech. 4, 81.
Pearson, C. E. 1965 J. Fluid Mech. 21, 611.
Roux, B., Bontoux, P., Ta Phuoc Loc & Daube, O. 1979 Approximation Methods for Navier-Stokes Problems, IUTAM-SYMPOSIUM Paderborn (W. Germany).
Schuh, H. 1953 Z. Flugwiss. 1, 122.
Son, J. S. & Hanratty, T. J. 1969 J. Fluid Mech. 35, 369.
Taneda, S. 1972 Recent Research on Unsteady Boundary Layers, vol. 2 (ed. E. A. Eichel-brenner). Quebec Laval University.
Ta Phuoc Loc & Daube, O. 1977 C. R. Acad. Sci. Paris 284, A 1241.
Ta Phuoc Loc & Daube, O. 1978 Special Session, Int. Conf. Numerical Methods in Laminar and Turbulent Flow, Swansea.
Thom, A. 1933 Proc. Roy. Soc. A 141, 651.
Thoman, D. C. and Szewczyk, A. A. 1969 Phys. Fluids Suppl. 12, II 76.
Wang, C. Y. 1967 J. Math. Phys. 46, 195.
Watson, E. J. 1955 Proc. Roy. Soc. A 231, 104.
Wundt, H. 1955 Ing.-Arch. Berlin, 23, 212.