Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T09:25:24.810Z Has data issue: false hasContentIssue false

Nonlinear electrohydrodynamic Rayleigh–Taylor instability. Part 1. A perpendicular field in the absence of surface charges

Published online by Cambridge University Press:  20 April 2006

Abou El Magd A. Mohamed
Affiliation:
Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
El Sayed F. El Shehawey
Affiliation:
Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt

Abstract

Nonlinear electrohydrodynamic Rayleigh-Taylor instability is investigated. A charge-free surface separating two semi-infinite dielectric fluids influenced by a normal electric field is subjected to nonlinear deformations. We use the method of multiple-scale perturbations in order to obtain uniformly valid expansions near the cutoff wavenumber separating stable from unstable flows. We obtain two nonlinear Schrödinger equations by means of which we can deduce the cutoff wavenumber and analyse the stability of the system. It is found that if a finite-amplitude wave exists then its small modulation is stable. We also obtain the surface elevation for such waves. The electric field plays a dual role in the stability criterion and the dielectric constant plays a distinctive role in this analysis. If the dielectric constant of the upper fluid is smaller than that of the lower fluid the field has a destabilizing effect for large wavenumbers. For relatively smaller wavenumbers the electric field stabilizes considerable parts of the first and second subharmonic regions in the stability diagrams; a result which is in contrast with the linear theory. If the dielectric constant of the upper fluid is larger than that of the lower fluid, then the field is stabilizing for larger values of the wavenumber K′ when ρ is small (ρ is the density ratio) and destabilizing for smaller values of K′.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atten, P. & Lacroix, J. C. 1979 J. Mec. 18, 469.
Bradley, R. 1978 Q. J. Mech. Appl. Maths. 31, 381.
Castellanos, A. & Velarde, M. E. 1981 Phys. Fluids 24, 1784.
Davey, A. 1972 J. Fluid Mech. 53, 769.
Davey, A. & Stewartson, K. 1974 Proc. R. Soc. Lond. A338, 101.
Emmons, H. W., Chang, C. T. & Watson, B. C. 1960 J. Fluid Mech. 7, 177.
Galitis, A. 1969 Magn. Gidrodin. 5, 68.
Gross, M. J. & Porter, J. E. 1966 Nature 212, 1343.
Hasimoto, H. & Ono, H. 1972 J. Phys. Soc. Japan 33, 805.
Ingraham, R. L. 1954 Proc. Phys. Soc. Lond. B67, 748.
Kant, R., Jindia, R. K. & Malik, S. K. 1981 Q. Appl. Maths 1, 23.
Karpman, V. I. & Krushkal, E. M. 1969 Sov. Phys. JETP 28, 277.
Lacroix, J. C., Atten, P. & Hopfinger, E. J. 1975 J. Fluid Mech. 69, 539.
Lewis, D. J. 1950 Proc. R. Soc. Lond. A202, 81.
Melcher, J. R. 1963 Field Coupled Surface Waves. MIT Press.
Mel'Nikov, V. I. & Meshkov, S. V. 1981 JETP Lett. 33, 211.
Michael, D. H. 1977 Q. Appl. Maths, 35, 345.
Mohamed, A. A. & Nayyar, N. K. 1973 Nuovo Cim. 16B, 286.
Nayfeh, A. H. 1969 J. Fluid Mech. 38, 619.
Nayfeh, A. H. 1973 Perturbation Methods Wiley-Interscience.
Nayfeh, A. H. 1976 Trans. A.S.M.E. E: J. Appl. Mech. 43, 584.
Rajappa, N. R. & Amaranath, T., 1977 Q. J. Mech. Appl. Maths, 30, 131.
Roberts, P. H. 1969 Q. J. Mech. Appl. Maths 22, 211.
Strauss, W. 1979 Nonlinear problems in Theoretical Physics (ed. A. F. Rañada). Lecture Notes in Physics, vol. 98, p. 127. Springer.
Takashima, M. & Aldridge, K. D. 1976 Q. J. Mech. Appl. Maths 29, 71.
Taylor, G. I. 1950 Proc. R. Soc. Lond. A201, 192.
Taylor, G. I. 1969 Proc. R. Soc. Lond. A313, 453.
Wanner, M. & Leiderer, P. 1979 Phys. Rev. Lett. 42, 315.
Worraker, W. J. & Richardson, A. T. 1981 J. Fluid Mech. 109, 217.