Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T06:10:48.019Z Has data issue: false hasContentIssue false

Modulation-resonance mechanism for surface waves in a two-layer fluid system

Published online by Cambridge University Press:  25 July 2019

Shixiao W. Jiang*
Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, PA 16802-6400, USA
Gregor Kovačič*
Affiliation:
Mathematical Sciences Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
Douglas Zhou*
Affiliation:
School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
David Cai
Affiliation:
School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, New York, NY 10012, USA NYUAD Institute, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
*
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]

Abstract

We propose a Boussinesq-type model to study the surface/interfacial wave manifestation of an underlying, slowly varying, long-wavelength baroclinic flow in a two-layer, density-stratified system. The results of our model show numerically that, under strong nonlinearity, surface waves, with their typical wavenumber being the resonant $k_{res}$, can be generated locally at the leading edge of the underlying, slowly varying, long-wavelength baroclinic flow. Here, the resonant $k_{res}$ satisfies the class 3 triad resonance condition among two short-mode waves and one long-mode wave in which all waves propagate in the same direction. Moreover, when the slope of the baroclinic flow is sufficiently small, only one spatially localized large-amplitude surface wave packet can be generated at the leading edge. This localized surface wave packet becomes high in amplitude and large in group velocity after the interaction with its surrounding waves. These results are qualitatively consistent with various experimental observations including resonant surface waves at the leading edge of an internal wave. Subsequently, we propose a mechanism, referred to as the modulation-resonance mechanism, underlying these surface phenomena, based on our numerical simulations. The proposed modulation-resonance mechanism combines the linear modulation, ray-based, theory for the spatiotemporal asymmetric behaviour of surface waves and the nonlinear class 3 triad resonance theory for the energy focusing of surface waves around the resonant wavenumber $k_{res}$ in Fourier space.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M.-R. 2012 A new triad resonance between co-propagating surface and interfacial waves. J. Fluid Mech. 691, 267278.Google Scholar
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O. B. et al. 2015 The formation and fate of internal waves in the South China sea. Nature 521 (7550), 6569.Google Scholar
Alpers, W. 1985 Theory of radar imaging of internal waves. Nature 314 (6008), 245247.Google Scholar
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A. & Lynch, J. F. 2007 Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 121, 695722.Google Scholar
Bakhanov, V. V. & Ostrovsky, L. A. 2002 Action of strong internal solitary waves on surface waves. J. Geophys. Res. 107, 3139.Google Scholar
Barros, R. & Choi, W. 2009 Inhibiting shear instability induced by large amplitude internal solitary waves in two-layer flows with a free surface. Stud. Appl. Maths 122, 325346.Google Scholar
Barros, R. & Gavrilyuk, S. 2007 Dispersive nonlinear waves in two-layer flows with free surface part ii. large amplitude solitary waves embedded into the continuous spectrum. Stud. Appl. Maths 119, 213251.Google Scholar
Benney, D. 1977 A general theory for interactions between short and long waves. Stud. Appl. Maths 56 (1), 8194.Google Scholar
Caponi, E. A., Crawford, D. R., Yuen, H. C. & Saffman, P. G.1988 Modulation of radar backscatter from the ocean by a variable surface current. Tech. Rep. DTIC Document.Google Scholar
Chen, T.2005 An efficient algorithm based on quadratic spline collocation and finite difference methods for parabolic partial differential equations. PhD thesis, University of Toronto.Google Scholar
Choi, W., Barros, R. & Jo, T.-C. 2009 A regularized model for strongly nonlinear internal solitary waves. J. Fluid Mech. 629, 7385.Google Scholar
Choi, W. & Camassa, R. 1996 Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech. 313, 83103.Google Scholar
Choi, W. & Camassa, R. 1999 Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 396, 136.Google Scholar
Craig, W., Guyenne, P. & Kalisch, H. 2004 A new model for large amplitude long internal waves. C. R. Méc 332, 525530.Google Scholar
Craig, W., Guyenne, P. & Kalisch, H. 2005 Hamiltonian long wave expansions for free surfaces and interfaces. Commun. Pure Appl. Maths 58, 15871641.Google Scholar
Craig, W., Guyenne, P. & Sulem, C. 2011 Coupling between internal and surface waves. Nat. Hazards 57, 617642.Google Scholar
Craig, W., Guyenne, P. & Sulem, C. 2012 The surface signature of internal waves. J. Fluid Mech. 710, 277303.Google Scholar
Donato, A. N., Peregrine, D. H. & Stocker, J. R. 1999 The focusing of surface waves by internal waves. J. Fluid Mech. 384, 2758.Google Scholar
Duda, T. F. & Farmer, D. M.1999 The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers. Tech. Rep. DTIC Document.Google Scholar
Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C. S., Tang, T. Y. & Yang, Y. J. 2004 Internal tide and nonlinear wave behavior in the continental slope in the northern South China sea. IEEE J. Ocean. Engng 29, 11051131.Google Scholar
Dysthe, K., Krogstad, H. E. & Müller, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287310.Google Scholar
Funakoshi, M. & Oikawa, M. 1983 The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Japan 56, 19821995.Google Scholar
Gargett, A. E. & Hughes, B. A. 1972 On the interaction of surface and internal waves. J. Fluid Mech. 52 (01), 179191.Google Scholar
Gasparovic, R. F., Apel, J. R. & Kasischke, E. S. 1988 An overview of the SAR internal wave experiment. J. Geophys. Res. 93, 1230412316.Google Scholar
Guyenne, P. 2006 Large-amplitude internal solitary waves in a two-fluid model. C. R. Méc. 334 (6), 341346.Google Scholar
Han, H. & Xu, Z. 2007 Numerical solitons of generalized Korteweg–de Vries equations. Appl. Maths Comput. 186, 483489.Google Scholar
Hashizume, Y. 1980 Interaction between short surface waves and long internal waves. J. Phys. Soc. Japan 48, 631638.Google Scholar
Hwung, H.-H., Yang, R.-Y. & Shugan, I. V. 2009 Exposure of internal waves on the sea surface. J. Fluid Mech. 626, 120.Google Scholar
Jo, T.-C. & Choi, W. 2008 On stabilizing the strongly nonlinear internal wave model. Stud. Appl. Maths 120, 6585.Google Scholar
Johnston, T. S., Merrifield, M. A. & Holloway, P. E. 2003 Internal tide scattering at the line islands ridge. J. Geophys. Res. 108 (C11), 3365.Google Scholar
Kawahara, T., Sugimoto, N. & Kakutani, T. 1975 Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Japan 39 (5), 13791386.Google Scholar
Kodaira, T., Waseda, T., Miyata, M. & Choi, W. 2016 Internal solitary waves in a two-fluid system with a free surface. J. Fluid Mech. 804, 201223.Google Scholar
Koop, C. G. & Butler, G. 1981 An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 112, 225251.Google Scholar
Kropfli, R. A., Ostrovski, L. A., Stanton, T. P., Skirta, E. A., Keane, A. N. & Irisov, V. 1999 Relationships between strong internal waves in the coastal zone and their radar and radiometric signatures. J. Geophys. Res. 104, 31333148.Google Scholar
Lee, K.-J., Shugan, I. V. & An, J.-S. 2007 On the interaction between surface and internal waves. J. Korean Phys. Soc. 51, 616622.Google Scholar
Lewis, J. E., Lake, B. M. & Ko, D. R. S. 1974 On the interaction of internal waves and surface gravity waves. J. Fluid Mech. 63 (04), 773800.Google Scholar
Moore, S. E. & Lien, R.-C. 2007 Pilot whales follow internal solitary waves in the South China sea. Mar. Mam. Sci. 23 (1), 193196.Google Scholar
Müller, P., Garrett, C. & Osborne, A. 2005 Rogue waves. Oceanography 18 (3), 66.Google Scholar
Osborne, A. R. & Burch, T. L. 1980 Internal solitons in the andaman sea. Science 208, 451460.Google Scholar
Parau, E. & Dias, F. 2001 Interfacial periodic waves of permanent form with free-surface boundary conditions. J. Fluid Mech. 437, 325336.Google Scholar
Perry, R. B. & Schimke, G. R. 1965 Large-amplitude internal waves observed off the northwest coast of sumatra. J. Geophys. Res. 70 (10), 23192324.Google Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phillips, O. M. 1974 Nonlinear dispersive waves. Annu. Rev. Fluid Mech. 6, 93110.Google Scholar
Sepulveda, N. 1987 Solitary waves in the resonant phenomenon between a surface gravity wave packet and an internal gravity wave. Phys. Fluids 30 (7), 19841992.Google Scholar
Tanaka, M. & Wakayama, K. 2015 A numerical study on the energy transfer from surface waves to interfacial waves in a two-layer fluid system. J. Fluid Mech. 763, 202217.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.Google Scholar