Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T20:19:19.716Z Has data issue: false hasContentIssue false

Low-order model for successive bifurcations of the fluidic pinball

Published online by Cambridge University Press:  17 December 2019

Nan Deng*
Affiliation:
Institute of Mechanical Sciences and Industrial Applications, ENSTA-Paris,Institut Polytechnique de Paris, 828 Bd des Maréchaux, F-91120Palaiseau, France LIMSI, CNRS, Université Paris-Saclay, Bât 507, rue du Belvédère, Campus Universitaire, F-91405Orsay, France
Bernd R. Noack
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, Bât 507, rue du Belvédère, Campus Universitaire, F-91405Orsay, France Institute for Turbulence-Noise-Vibration Interaction and Control, Harbin Institute of Technology, Shenzhen Graduate School, University Town, Xili, Shenzhen518058, PR China Institut für Strömungsmechanik und Technische Akustik (ISTA), Technische Universität Berlin, Müller-Breslau-Straße 8, D-10623Berlin, Germany
Marek Morzyński
Affiliation:
Chair of Virtual Engineering, Poznań University of Technology, Jana Pawla II 24, PL 60-965Poznań, Poland
Luc R. Pastur
Affiliation:
Institute of Mechanical Sciences and Industrial Applications, ENSTA-Paris,Institut Polytechnique de Paris, 828 Bd des Maréchaux, F-91120Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

We propose the first least-order Galerkin model of an incompressible flow undergoing two successive supercritical bifurcations of Hopf and pitchfork type. A key enabler is a mean-field consideration exploiting the symmetry of the mean flow and the asymmetry of the fluctuation. These symmetries generalize mean-field theory, e.g. no assumption of slow growth rate is needed. The resulting five-dimensional Galerkin model successfully describes the phenomenogram of the fluidic pinball, a two-dimensional wake flow around a cluster of three equidistantly spaced cylinders. The corresponding transition scenario is shown to undergo two successive supercritical bifurcations, namely a Hopf and a pitchfork bifurcation on the way to chaos. The generalized mean-field Galerkin methodology may be employed to describe other transition scenarios.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bansal, M. S. & Yarusevych, S. 2017 Experimental study of flow through a cluster of three equally spaced cylinders. Exp. Therm. Fluid Sci. 80, 203217.CrossRefGoogle Scholar
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750756.CrossRefGoogle Scholar
Barkley, D. & Henderson, R. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Bonnavion, G. & Cadot, O. 2018 Unstable wake dynamics of rectangular flat-backed bluff bodies with inclination and ground proximity. J. Fluid Mech. 854, 196232.CrossRefGoogle Scholar
Bourgeois, J. A., Noack, B. R. & Martinuzzi, R. J. 2013 Generalised phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.CrossRefGoogle Scholar
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.CrossRefGoogle Scholar
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (5), 39323937.CrossRefGoogle ScholarPubMed
Cadot, O., Evrard, A. & Pastur, L. 2015 Imperfect supercritical bifurcation in a three-dimensional turbulent wake. Phys. Rev. E 91 (6), 063005.Google Scholar
Cornejo Maceda, G. Y.2017 Machine learning control applied to wake stabilization. MS2 Internship Report, LIMSI and ENSAM, Paris, France.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.CrossRefGoogle Scholar
Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. Intl J. Numer. Meth. Fluids 31 (2), 451479.3.0.CO;2-O>CrossRefGoogle Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20 (5), 051702.CrossRefGoogle Scholar
Fletcher, C. A. 1984 Computational Galerkin Methods, 1st edn. Springer.CrossRefGoogle Scholar
Gomez, F., Blackburn, H. M., Rudman, M., Sharma, A. S. & McKeon, B. J. 2016 A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.CrossRefGoogle Scholar
Gorban, A. N. & Karlin, I. V. 2005 Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics, vol. 660. Springer.Google Scholar
Grandemange, M., Cadot, O. & Gohlke, M. 2012 Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. Phys. Rev. E 86 (3), 035302.Google ScholarPubMed
Grandemange, M., Gohlke, M. & Cadot, O. 2013 Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2014 Statistical axisymmetry of the turbulent sphere wake. Exp. Fluids 55 (11), 1838.CrossRefGoogle Scholar
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77 (5), 055308.Google Scholar
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1, 303322.CrossRefGoogle Scholar
Ishar, R., Kaiser, E., Morzynski, M., Fernex, D., Semaan, R., Albers, M., Meysonnat, P., Schröder, W. & Noack, B. R. 2019 Metric for attractor overlap. J. Fluid Mech. 874, 720755.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Jordan, D. W. & Smith, P. 1999 Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, vol. 2. Oxford University Press.Google Scholar
Lam, K. & Cheung, W. C. 1988 Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements. J. Fluid Mech. 196, 126.CrossRefGoogle Scholar
Landau, L. D. 1944 On the problem of turbulence. C. R. Acad. Sci. USSR 44, 311314.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Course of Theoretical Physics, vol. 6. Pergamon Press.Google Scholar
Loiseau, J. C., Noack, B. R. & Brunton, S. L. 2018 Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459490.CrossRefGoogle Scholar
Luchtenburg, D. M., Günter, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech. 623, 283316.CrossRefGoogle Scholar
Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521539.CrossRefGoogle Scholar
Manneville, P. 2010 Instabilities, Chaos and Turbulence, vol. 1. World Scientific.CrossRefGoogle Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.CrossRefGoogle Scholar
Mittal, R. 1999 Planar symmetry in the unsteady wake of a sphere. AIAA J. 37 (3), 388390.CrossRefGoogle Scholar
Morzynski, M., Afanasiev, K. & Thiele, F. 1999 Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Meth. Appl. Mech. Engng 169 (1), 161176.CrossRefGoogle Scholar
Newhouse, S., Ruelle, D. & Takens, F. 1978 Occurrence of strange Axiom A attractors near quasi periodic flows on T m, m⩾3. Commun. Math. Phys. 64 (1), 3540.CrossRefGoogle Scholar
Noack, B. R. 2016 From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech. 802, 14.CrossRefGoogle Scholar
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Noack, B. R. & Eckelmann, H. 1994a A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.CrossRefGoogle Scholar
Noack, B. R. & Eckelmann, H. 1994b Theoretical investigation of the bifurcations and the turbulence attractor of the cylinder wake. Z. Angew. Math. Mech. 74 (5), T396T397.Google Scholar
Noack, B. R. & Morzyński, M.2017 The fluidic pinball – a toolkit for multiple-input multiple-output flow control (version 1.0). Tech. Rep. 02/2017. Chair of Virtual Engineering, Poznan University of Technology, Poland.Google Scholar
Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn. 33, 103148.Google Scholar
Noack, B. R., Stankiewicz, W., Morzyński, M. & Schmid, P. J. 2016 Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872.CrossRefGoogle Scholar
Price, S. J. & Paidoussis, M. P. 1984 The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow. J. Wind Engng Ind. Aerodyn. 17 (3), 329347.CrossRefGoogle Scholar
Rempfer, D. 1994 On the structure of dynamical systems describing the evolution of coherent structures in a convective boundary layer. Phys. Fluids 6 (3), 14021404.CrossRefGoogle Scholar
Rempfer, D. & Fasel, H. F. 1994 Evolution of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 260, 351375.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical model and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Rigas, G., Oxlade, A. R., Morgans, A. S. & Morrison, J. F. 2014 Low-dimensional dynamics of a turbulent axisymmetric wake. J. Fluid Mech. 755, R5.CrossRefGoogle Scholar
Rigas, G., Schmidt, O. T., Colonius, T. & Bres, G. A. 2017 One way Navier–Stokes and resolvent analysis for modeling coherent structures in a supersonic turbulent jet. In 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO. AIAA.Google Scholar
Roweis, S. T. & Saul, L. K. 2000 Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500), 23232326.CrossRefGoogle ScholarPubMed
Rowley, C. W. & Dawson, S. T. 2017 Model reduction for flow analysis and control. Ann. Rev. Fluid Mech. 49, 387417.CrossRefGoogle Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.CrossRefGoogle Scholar
Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, 144.Google Scholar
Sayers, A. T. 1987 Flow interference between three equispaced cylinders when subjected to a cross flow. J. Wind Engng Ind. Aerodyn. 26 (1), 119.CrossRefGoogle Scholar
Schatz, M. F., Barkley, D. & Swinney, H. L. 1995 Instability in a spatially periodic open flow. Phys. Fluids 7 (2), 344358.CrossRefGoogle Scholar
Schewe, G. 1983 On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265285.CrossRefGoogle Scholar
Schlegel, M. & Noack, B. R. 2015 On long-term boundedness of Galerkin models. J. Fluid Mech. 765, 325352.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593 (1), 333358.CrossRefGoogle Scholar
Strogatz, S., Friedman, M., Mallinckrodt, A. J. & McKay, S. 1994 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Comput. Phys. 8 (5), 532532.CrossRefGoogle Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.CrossRefGoogle Scholar
Swift, J. & Hohenberg, P. C. 1977 Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15 (1), 319328.CrossRefGoogle Scholar
Szaltys, P., Chrust, M., Przadka, A., Goujon-Durand, S., Tuckerman, L. S. & Wesfreid, J. E. 2012 Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 28, 483487.CrossRefGoogle Scholar
Tadmor, G., Lehmann, O., Noack, B. R., Cordier, L., Delville, J., Bonnet, J.-P. & Morzyński, M. 2011 Reduced order models for closed-loop wake control. Phil. Trans. R. Soc. Lond. A 369 (1940), 15131524.CrossRefGoogle ScholarPubMed
Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tatsuno, M., Amamoto, H. & Ishi-i, K. 1998 Effects of interference among three equidistantly arranged cylinders in a uniform flow. Fluid Dyn. Res. 22 (5), 297315.CrossRefGoogle Scholar
Taylor, C. & Hood, P. 1973 A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73100.CrossRefGoogle Scholar
Turton, S. E., Tuckerman, L. S. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91 (4), 043009.Google ScholarPubMed
Watson, J. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9, 371389.CrossRefGoogle Scholar
Zaitsev, V. M. & Shliomis, M. I. 1971 Hydrodynamic fluctuations near convection threshold. Sov. Phys. JETP 32, 866.Google Scholar
Zhang, H.-Q., Noack, B. R. & Eckelmann, H.1994 Numerical computation of the 3-D cylinder wake. Tech. Rep. 3/1994. Max-Planck-Institut für Strömungsforschung, Göttingen, Germany.Google Scholar

Deng et al. supplementary movie 1

Quasi-periodic dynamics at ReD=105 after the transition. The base-bleeding jet oscillates around the deflected position with a lower frequency. The current time is expressed in convective time units.

Download Deng et al. supplementary movie 1(Video)
Video 2.6 MB

Deng et al. supplementary movie 2

Chaotic dynamics at ReD=130 after the transition. The base-bleeding jet switches randomly in time between the two symmetric deflected positions. The current time is expressed in convective time units.

Download Deng et al. supplementary movie 2(Video)
Video 3.9 MB