Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T07:59:17.290Z Has data issue: false hasContentIssue false

Long-range wall perturbations in dense granular flows

Published online by Cambridge University Press:  23 December 2014

Pierre G. Rognon*
Affiliation:
Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia IUSTI-CNRS UMR 7343, Aix-Marseille University, 13453 Marseille, France
Thomas Miller
Affiliation:
Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering Science, University College London, Gower Street, London WC1E 6BT, UK
Bloen Metzger
Affiliation:
IUSTI-CNRS UMR 7343, Aix-Marseille University, 13453 Marseille, France
Itai Einav
Affiliation:
Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
*
Email address for correspondence: [email protected]

Abstract

We explore how the rheology of dense granular flows is affected by the presence of sidewalls. The study is based on discrete element method simulations of plane-shear flows between two rough walls, prescribing both the normal stress and the shear rate. Results confirm previous observations for different systems: large layers near the walls develop where the local viscosity is not constant, but decreases when approaching the walls. The size of these layers can reach several dozen grain diameters, and is found to increase when the flow decelerates, as a power law of the inertial number. Two non-local models are found to adequately explain such features, namely the kinetic elasto-plastic fluidity (KEP) model and the eddy viscosity model (EV). The analysis of the internal kinematics further shows that the vorticity and its associated length scale may be a key component of these non-local behaviours.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedi, S. & Rechenmacher, A. 2011 Vortex structures inside shear bands in sands. In Multiscale and Multiphysics Processes in Geomechanics, pp. 2124. Springer.CrossRefGoogle Scholar
Abedi, S., Rechenmacher, A. L. & Orlando, A. D. 2012 Vortex formation and dissolution in sheared sands. Granul. Matt. 14 (6), 695705.CrossRefGoogle Scholar
Andreotti, B. 2007 A mean-field model for the rheology and the dynamical phase transitions in the flow of granular matter. Europhys. Lett. 79 (3), 34001.CrossRefGoogle Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Azéma, E. & Radjaï, F. 2014 Internal structure of inertial granular flows. Phys. Rev. Lett. 112 (7), 078001.CrossRefGoogle ScholarPubMed
Behringer, R. P., Daniels, K. E., Majmudar, T. S. & Sperl, M. 2008 Fluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system. Phil. Trans. R. Soc. Lond. A 366 (1865), 493504.Google ScholarPubMed
Blair, D. L. & Kudrolli, A. 2001 Velocity correlations in dense granular gases. Phys. Rev. E 64 (5), 050301.CrossRefGoogle ScholarPubMed
Bocquet, L., Colin, A. & Ajdari, A. 2009 Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103 (3), 36001.CrossRefGoogle ScholarPubMed
Bonnoit, C., Darnige, T., Clement, E. & Lindner, A. 2010a Inclined plane rheometry of a dense granular suspension. J. Rheol. 54, 6579.CrossRefGoogle Scholar
Bonnoit, C., Lanuza, J., Lindner, A. & Clement, E. 2010b Mesoscopic length scale controls the rheology of dense suspensions. Phys. Rev. Lett. 105 (10), 108302.CrossRefGoogle ScholarPubMed
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111 (23), 238301.CrossRefGoogle ScholarPubMed
Brito, C. & Wyart, M. 2007 Heterogeneous dynamics, marginal stability and soft modes in hard sphere glasses. J. Stat. Mech. 2007 (8), L08003.CrossRefGoogle Scholar
da Cruz, F., Chevoir, F., Roux, J. N. & Iordanoff, I. 2004 Macroscopic friction of dry granular materials. In Transient Processes in Tribology (ed. Dalmaz, G., Lubrecht, A. A., Dowson, D. & Priest, M.), pp. 5361. Elsevier.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.CrossRefGoogle ScholarPubMed
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Géotech. 29, 4765.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46, 6795.CrossRefGoogle Scholar
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
Goujon, C., Thomas, N. & Dalloz-Dubrujeaud, B. 2003 Monodisperse dry grain flows on inclined planes: role of roughness. Eur. Phys. J. E 11, 147157.CrossRefGoogle Scholar
Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. 2008 Spatial cooperativity in soft glassy flows. Nature 454 (7200), 8487.CrossRefGoogle ScholarPubMed
Hagans, N. & Feitosa, K. 2013 Extensional rheology of a two dimensional foam. Bull. Am. Phys. Soc. 58, 1198.Google Scholar
Hartley, R. R. & Behringer, R. P. 2003 Logarithmic rate dependence of force networks in sheared granular materials. Nature 421 (6926), 928931.CrossRefGoogle ScholarPubMed
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.CrossRefGoogle ScholarPubMed
Jop, P., Mansard, V., Chaudhuri, P., Bocquet, L. & Colin, A. 2012 Microscale rheology of a soft glassy material close to yielding. Phys. Rev. Lett. 108, 148301.CrossRefGoogle ScholarPubMed
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301.Google ScholarPubMed
Lechenault, F., Dauchot, O., Biroli, G. & Bouchaud, J.-P. 2008 Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass. Europhys. Lett. 83 (4), 46003.CrossRefGoogle Scholar
Liu, A. J. & Nagel, S. R. 2010 The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1 (1), 347369.CrossRefGoogle Scholar
Majmudar, T. S. & Behringer, R. P. 2005 Contact force measurements and stress-induced anisotropy in granular materials. Nature 435 (7045), 10791082.CrossRefGoogle ScholarPubMed
Mansard, V., Colin, A., Chaudhuri, P. & Bocquet, L. 2013 A molecular dynamics study of non-local effects in the flow of soft jammed particles. Soft Matt. 9 (31), 74897500.CrossRefGoogle Scholar
Marmottant, P., Raufaste, C. & Graner, F. 2008 Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam. Phys. Rev. E 25 (4), 371384.Google ScholarPubMed
Miller, T.2014, The kinematics of dense granular materials under indefinite plane-shear. PhD thesis, School of Civil Engineering, The University of Sydney.Google Scholar
Miller, T., Rognon, P., Metzger, B. & Einav, I. 2013 Eddy viscosity in dense granular flows. Phys. Rev. Lett. 111 (5), 058002.Google ScholarPubMed
Mohan, L. S., Rao, K. K. & Nott, P. R. 2002 Frictional Cosserat model for slow shearing of granular materials. J. Fluid Mech. 457, 377409.CrossRefGoogle Scholar
Mueth, D. M. 2003 Measurements of particle dynamics in slow, dense granular couette flow. Phys. Rev. E 67 (1), 011304.CrossRefGoogle ScholarPubMed
Nordstrom, K. N., Gollub, J. P. & Durian, D. J. 2011 Dynamical heterogeneity in soft-particle suspensions under shear. Phys. Rev. E 84 (2), 021403.CrossRefGoogle ScholarPubMed
Pouliquen, O. 2004 Velocity correlation in dense granular flows. Phys. Rev. Lett. 93, 248001.CrossRefGoogle ScholarPubMed
Pouliquen, O. & Forterre, Y. 2001 Slow dense granular flows as a self-induced process. Adv. Complex Syst. 4, 441450.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. Lond. A 367 (1909), 50915107.Google ScholarPubMed
Radjaï, F. & Roux, S. 2002 Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev. Lett. 89 (6), 064302.CrossRefGoogle ScholarPubMed
Rechenmacher, A. L. & Abedi, S. 2011 Length scales for nonaffine deformation in localized, granular shear. In Advances in Bifurcation and Degradation in Geomaterials, pp. 5965. Springer.CrossRefGoogle Scholar
Richefeu, V., Combe, G. & Viggiani, G. 2012 An experimental assessment of displacement fluctuations in a 2d granular material subjected to shear. Géotech. Lett. 2 (July–September), 113118.CrossRefGoogle Scholar
Rognon, P., Einav, I. & Gay, C. 2010 Internal relaxation time in immersed particulate materials. Phys. Rev. E 81, 061304.CrossRefGoogle ScholarPubMed
Rognon, P. G., Roux, J. N., Naaïm, M. & Chevoir, F. 2007 Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids 19, 058101.CrossRefGoogle Scholar
Rognon, P. G., Roux, J. N., Naaim, M. & Chevoir, F. 2008 Dense flows of cohesive granular materials. J. Fluid Mech. 596, 2147.CrossRefGoogle Scholar
Rognon, P. G., Roux, J.-N., Wolf, D., Naaim, M. & Chevoir, F. 2006 Rheophysics of cohesive granular materials. Europhys. Lett. 74, 644650.CrossRefGoogle Scholar
Sexton, M. B., Möbius, M. E. & Hutzler, S. 2011 Bubble dynamics and rheology in sheared two-dimensional foams. Soft Matt. 7 (23), 1125211258.CrossRefGoogle Scholar
Shojaaee, Z., Brendel, L., Török, J. & Wolf, D. E. 2012a Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction. Phys. Rev. E 86 (1), 011302.Google ScholarPubMed
Shojaaee, Z., Roux, J. N., Chevoir, F. & Wolf, D. E. 2012b Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region. Phys. Rev. E 86 (1), 011301.Google Scholar
Staron, L. 2008 Correlated motion in the bulk of dense granular flows. Phys. Rev. E 77 (5), 051304.CrossRefGoogle ScholarPubMed
Staron, L., Lagrée, P.-Y., Josserand, C. & Lhuillier, D. 2010 Flow and jamming of a two-dimensional granular bed: toward a nonlocal rheology? Phys. Fluids 22, 113303.CrossRefGoogle Scholar
Tordesillas, A., Lin, Q., Zhang, J., Behringer, R. P. & Shi, J. 2011 Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59 (2), 265296.CrossRefGoogle Scholar
Tordesillas, A., Zhang, J. & Behringer, R. 2009 Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoengin. 4 (1), 316.CrossRefGoogle Scholar