Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:31:55.944Z Has data issue: false hasContentIssue false

Linear stability of inviscid vortex rings to axisymmetric perturbations

Published online by Cambridge University Press:  15 July 2019

Abstract

We consider the linear stability to axisymmetric perturbations of the family of inviscid vortex rings discovered by Norbury (J. Fluid Mech., vol. 57, 1973, pp. 417–431). Since these vortex rings are obtained as solutions to a free-boundary problem, their stability analysis is performed using recently developed methods of shape differentiation applied to the contour-dynamics formulation of the problem in the three-dimensional axisymmetric geometry. This approach allows us to systematically account for the effects of boundary deformations on the linearized evolution of the vortex ring. We investigate the instantaneous amplification of perturbations assumed to have the same the circulation as the vortex rings in their equilibrium configuration. These stability properties are then determined by the spectrum of a singular integro-differential operator defined on the vortex boundary in the meridional plane. The resulting generalized eigenvalue problem is solved numerically with a spectrally accurate discretization. Our results reveal that while thin vortex rings remain neutrally stable to axisymmetric perturbations, they become linearly unstable to such perturbations when they are sufficiently ‘fat’. Analysis of the structure of the eigenmodes demonstrates that they approach the corresponding eigenmodes of Rankine’s vortex and Hill’s vortex in the thin-vortex and fat-vortex limit, respectively. This study is a stepping stone on the way towards a complete stability analysis of inviscid vortex rings with respect to general perturbations.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmetov, D. G. 2009 Vortex Rings. Springer.Google Scholar
Alekseenko, S. V., Kuibin, P. A. & Okulov, V. L. 2007 Theory of Concentrated Vortices: An Introduction. Springer.Google Scholar
Arvidsson, P. M., Kovács, S. J., Töger, J., Borgquist, R., Heiberg, E., Carlsson, M. & Arheden, H. 2016 Vortex ring behavior provides the epigenetic blueprint for the human heart. Sci. Rep. 6, 22021.Google Scholar
Baker, G. R. 1990 A study of the numerical stability of the method of contour dynamics. Phil. Trans. R. Soc. Lond. 333, 391400.Google Scholar
Berezovskii, A. A. & Kaplanskii, F. B. 1992 Dynamics of thin vortex rings in a low-viscosity fluid. Fluid Dyn. 27, 643649.Google Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Brooke, B. T. 1975 The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics. In Proc. Symp. on Applications of Methods of Functional Analysis to Problems in Mechanics, vol. 503. Springer.Google Scholar
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41 (1), 1733.Google Scholar
Delfour, M. C. & Zolésio, J.-P. 2001 Shape and Geometries — Analysis, Differential Calculus and Optimization. SIAM.Google Scholar
Dritschel, D. G. 1985 The stability and energetics of corotating uniform vortices. J. Fluid Mech. 157, 95134.Google Scholar
Dritschel, D. G. 1990 The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210, 223261.Google Scholar
Dritschel, D. G. 1995 A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269303.Google Scholar
Dritschel, D. G. & Legras, B. 1991 The elliptical models of two-dimensional vortex dynamics. II: disturbance equations. Phys. Fluids A 3, 855869.Google Scholar
Elcrat, A., Fornberg, B. & Miller, K. 2005 Stability of vortices in equilibrium with a cylinder. J. Fluid Mech. 544, 5368.Google Scholar
Elcrat, A. & Protas, B. 2013 A framework for linear stability analysis of finite-area vortices. Proc. R. Soc. Lond. A 469, 20120709.Google Scholar
Fraenkel, L. E. 1970 On steady vortex rings of small cross-section in an ideal fluid. Proc. R. Soc. Lond. A 316 (1524), 2962.Google Scholar
Fukumoto, Y. & Hattori, Y. 2005 Curvature instability of a vortex ring. J. Fluid Mech. 526, 77115.Google Scholar
Fukumoto, Y. & Kaplanski, F. B. 2008 Global time evolution of an axisymmetric vortex ring at low reynolds numbers. Phys. Fluids 20, 053103.Google Scholar
Fukumoto, Y. & Moffatt, H. K. 2000 Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 145.Google Scholar
Fukumoto, Y. & Moffatt, H. K. 2008 Kinematic variational principle for motion of vortex rings. Physica D 237, 22102217.Google Scholar
Fukuyu, A., Ruzi, T. & Kanai, A. 1994 The response of Hill’s vortex to a small three dimensional disturbance. J. Phys. Soc. Japan 63, 510527.Google Scholar
Gallay, T. & Smets, D.2018 Spectral stability of inviscid columnar vortices. arXiv:1805.05064.Google Scholar
Giannuzzi, P. M., Hargather, M. J. & Doig, G. C. 2016 Explosive-driven shock wave and vortex ring interaction with a propane flame. Shock Waves 26 (6), 851857.Google Scholar
Golub, G. 1973 Some modified matrix eigenvalue problems. SIAM Rev. 15 (2), 318334.Google Scholar
Graber, C. E.2015 Vortex cannon with enhanced ring vortex generation. US Patent US9217392B2.Google Scholar
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77, 055308.Google Scholar
Guo, Y., Hallstrom, C. & Spirn, D. 2004 Dynamics near an unstable Kirchhoff ellipse. Commun. Math. Phys. 245, 297354.Google Scholar
Hackbusch, W. 1995 Integral Equations: Theory and Numerical Treatment. Birkhäuser.Google Scholar
Hattori, Y. & Fukumoto, Y. 2003 Short-wavelength stability analysis of thin vortex rings. Phys. Fluids 15 (10), 31513163.Google Scholar
Hattori, Y. & Hijiya, K. 2010 Short-wavelength stability analysis of Hill’s vortex with/without swirl. Phys. Fluids 22, 074104.Google Scholar
Hicks, W. M. 1899 II. Researches in vortex motion. Part III. On spiral or gyrostatic vortex aggregates. Phil. Trans. R. Soc. Lond. A 192, 3399.Google Scholar
Hill, M. J. M. 1894 On a spherical vortex. Phil. Trans. R. Soc. Lond. A 185, 213245.Google Scholar
Kamm, J. R.1987 Shape and stability of two-dimensional vortex regions. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Kaplanski, F. B. & Rudi, Y. A. 2005 A model for the formation of ‘optimal’ vortex ring taking into account viscosity. Phys. Fluids 17, 087101.Google Scholar
Kelvin Lord 1867 The traslatory velocity of a circular vortex ring. Phil. Mag. 33, 511512.Google Scholar
Kelvin Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Kheradvar, A. & Pedrizzetti, G. 2012 Vortex Formation in the Cardiovascular System. Springer.Google Scholar
Lamb, H. 1932 Hydrodynamics. Dover.Google Scholar
Laub, A. J. 2005 Matrix Analysis for Scientists and Engineers. SIAM.Google Scholar
Lifschitz, A. 1995 Instabilities of ideal fluids and related topics. Z. Angew. Math. Mech. 75, 411422.Google Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.Google Scholar
Llewellyn Smith, S. G. & Ford, R. 2001 Three-dimensional acoustic scattering by vortical flows. Part I: general theory. Phys. Fluids 13, 28762889.Google Scholar
Love, A. E. H. 1893 On the stability of certain vortex motions. Proc. Lond. Math. Soc. s1–25, 1843.Google Scholar
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81 (3), 465495.Google Scholar
Moffatt, H. K. & Moore, D. W. 1978 The response of Hill’s spherical vortex to a small axisymmetric disturbance. J. Fluid Mech. 87, 749760.Google Scholar
Mohseni, K. 2001 Statistical equilibrium theory for axisymmetric flow: Kelvin’s variational principle and an explanation for the vortex ring pinch-off process. Phys. Fluids 13, 19241931.Google Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346 (1646), 413425.Google Scholar
Muskhelishvili, N. I. 2008 Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, 2nd edn. Dover.Google Scholar
Norbury, J. 1972 A steady vortex ring close to Hill’s spherical vortex. Proc. Camb. Phil. Soc. 72, 253282.Google Scholar
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57, 417431.Google Scholar
O’Farrell, C. & Dabiri, J. O. 2012 Perturbation response and pinch-off of vortex rings and dipoles. J. Fluid Mech. 704, 280300.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W.(Eds) 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Pozrikidis, C. 1986 The nonlinear instability of Hill’s vortex. J. Fluid Mech. 168, 337367.Google Scholar
Protas, B. & Elcrat, A. 2016 Linear stability of Hill’s vortex to axisymmetric perturbations. J. Fluid Mech. 799, 579602.Google Scholar
Pullin, D. I. 1992 Contour dynamics methods. Annu. Rev. Fluid Mech. 24, 89115.Google Scholar
Rozi, T. 1999 Evolution of the surface of Hill’s vortex subjected to a small three-dimensional disturbance for the cases of m = 0, 2, 3 and 4. J. Phys. Soc. Japan 68, 29402955.Google Scholar
Rozi, T. & Fukumoto, Y. 2000 The most unstable perturbation of wave-packet form inside Hill’s vortex. J. Phys. Soc. Japan 69, 27002701.Google Scholar
Saffman, P. G. 1970 The velocity of viscous vortex rings. Stud. Appl. Math. 49, 371380.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Shariff, K., Leonard, A. & Ferziger, J. H. 2008 A contour dynamics algorithm for axisymmetric flow. J. Comput. Phys. 227, 90449062.Google Scholar
Trefethen, L. N. 2000 Spectral Methods in Matlab. SIAM.Google Scholar
Trefethen, N. 2013 Approximation Theory and Approximation Practice. SIAM.Google Scholar
Tung, C. & Ting, L. 1967 Motion and decay of a vortex ring. Phys. Fluids 10, 901910.Google Scholar
Wakelin, S. L. & Riley, N. 1996 Vortex ring interactions. II. Inviscid models. Q. J. Mech. Appl. Maths 49, 287309.Google Scholar
Wan, Y. H. 1988 Variational principles for Hill’s spherical vortex and nearly spherical vortices. Trans. Am. Math. Soc. 308, 299312.Google Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66 (1), 3547.Google Scholar
Widnall, S. E., Sullivan, J. P. & Owen, P. R. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332 (1590), 335353.Google Scholar
Widnall, S. E., yin Tsai, C. & Stuart, J. T. 1977 The instability of the thin vortex ring of constant vorticity. Phil. Trans. R. Soc. Lond. A 287 (1344), 273305.Google Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2006 Vorticity and Vortex Dynamics. Springer.Google Scholar
Ye, Q.-Y. & Chu, C. K. 1995 Unsteady evolutions of vortex rings. Phys. Fluids 7 (4), 795801.Google Scholar
Supplementary material: File

Protas supplementary material

Protas supplementary material 1

Download Protas supplementary material(File)
File 790.1 KB