Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T05:24:11.011Z Has data issue: false hasContentIssue false

Linear global stability of two incompressible coaxial jets

Published online by Cambridge University Press:  13 July 2017

J. Canton
Affiliation:
Linné FLOW Centre and Swedish e-Science Research Centre (SeRC), KTH Mechanics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
F. Auteri*
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
M. Carini
Affiliation:
ONERA – The French Aerospace Lab, F92190 Meudon, France
*
Email address for correspondence: [email protected]

Abstract

The linear stability of two incompressible coaxial jets, separated by a thick duct wall, is investigated by means of both a modal and a non-modal approach within a global framework. The attention is focused on the range of unitary velocity ratios for which an alternate vortex shedding from the duct wall is known to dominate the flow. In spite of the inherent convective nature of jet flow instabilities, such behaviour is shown to originate from an unstable global mode of the dynamics linearised around the axisymmetric base flow. The corresponding wavemaker is located in the recirculating-flow region formed behind the duct wall. At the same time, the transient-growth analysis reveals that huge amplifications (up to $20$ orders of magnitude) of small flow perturbations at the nozzle exit can occur in the subcritical regime, especially for high ratios between the outer and the inner velocities.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amestoy, R., Duff, I. & L’Excellent, J.-Y. 2000 Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Meth. Appl. Math. 184, 501520.Google Scholar
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14351458.CrossRefGoogle Scholar
Buresti, G., Petagna, P. & Talamelli, A. 1994 Experimental characterization of the velocity field of a coaxial jet configuration. Exp. Therm. Fluid Sci. 9, 135146.CrossRefGoogle Scholar
Camarri, S. & Giannetti, F. 2010 Effect of confinement on three-dimensional stability in the wake of a circular cylinder. J. Fluid Mech. 642, 477487.CrossRefGoogle Scholar
Canton, J.2013 Global linear stability of axisymmetric coaxial jets. Master’s thesis, Politecnico di Milano, https://www.politesi.polimi.it/handle/10589/87827.Google Scholar
Canton, J., Schlatter, P. & Örlü, R. 2016 Modal instability of the flow in a toroidal pipe. J. Fluid Mech. 792, 894909.CrossRefGoogle Scholar
Carini, M., Giannetti, F. & Auteri, F. 2014a First instability and structural sensitivity of the flow past two side-by-side cylinders. J. Fluid Mech. 749, 627648.CrossRefGoogle Scholar
Carini, M., Giannetti, F. & Auteri, F. 2014b On the origin of the flip-flop instability of two side-by-side cylinder wakes. J. Fluid Mech. 742, 552576.CrossRefGoogle Scholar
Dahm, W. J. A., Clifford, E. F. & Tryggvanson, G. 1992 Vortex structure and dynamics in the near field of a coaxial jet. J. Fluid Mech. 241, 371402.CrossRefGoogle Scholar
Djeridane, T.1994 Contribution à l’étude expérimentale de jets turbulents axisymétriques à densité variable. PhD thesis, Aix-Marseille II.Google Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 web page.http://nek5000mcs.anl.gov.Google Scholar
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 Modal and transient dynamics of jet flows. Phys. Fluids 25, 044103.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid. Mech. 581, 167197.CrossRefGoogle Scholar
Gloor, M., Obrist, D. & Kleiser, L. 2013 Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow. Phys. Fluids 25, 084102.CrossRefGoogle Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godrèche, C. & Manneville, P.), pp. 81294. Cambridge University Press.CrossRefGoogle Scholar
Juniper, M. P. & Candel, S. M. 2003 The stability of ducted compound flows and consequences for the geometry of coaxial injectors. J. Fluid Mech. 482, 257269.CrossRefGoogle Scholar
Ko, N. W. M. & Kwan, A. S. H. 1976 The initial region of subsonic coaxial jets. J. Fluid Mech. 73, 305332.CrossRefGoogle Scholar
Lehoucq, R. B, Sorensen, D. C. & Yang, C. 1998 ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.CrossRefGoogle Scholar
Michalke, A. 1993 On the influence of a wake on the inviscid instability of a circular jet with external flow. Eur. J. Mech. (B/Fluids) 12, 579595.Google Scholar
Olsen, W. & Karchmer, A.1976 Lip noise generated by flow separation from nozzle surfaces. Tech. Rep. 76-3 AIAA.CrossRefGoogle Scholar
Pralits, J. O., Brandt, L. & Giannetti, F. 2010 Instability and sensitivity of the flow around a rotating circular cylinder. J. Fluid Mech. 650, 124.CrossRefGoogle Scholar
Reddy, S. & Henningson, D. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.CrossRefGoogle Scholar
Rehab, H., Villermaux, E. & Hopfinger, E. J. 1997 Flow regimes of large-velocity-ratio coaxial jets. J. Fluid Mech. 345, 357381.CrossRefGoogle Scholar
Salinger, A. G., Bou-Rabee, N. M., Pawlowski, R. P., Wilkes, E. D., Burroughs, E. A., Lehoucq, E. A. & Romero, L. A.2002 LOCA 1.1 – Library Of Continuation Algorithms: Theory and Implementation Manual. Tech. Rep. SAND2002-0396. Sandia National Laboratoris.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Segalini, A.2010 Experimental analysis of coaxial jets: instability, flow and mixing characterization. PhD thesis, Università di Bologna.Google Scholar
Segalini, A. & Talamelli, A. 2011 Experimental analysis of dominant instabilities in coaxial jets. Phys. Fluids 23, 024103.CrossRefGoogle Scholar
da Silva, C. B., Balarac, G. & Metais, O. 2003 Transition in high velocity ratio coaxial jets analysed from direct numerical simulations. J. Turbul. 4, N24.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Sipp, D. & Marquet, O. 2013 Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fuid Dyn. 27, 617635.CrossRefGoogle Scholar
Talamelli, A. & Gavarini, I. 2006 Linear stability characteristics of incompressible coaxial jets. Flow Turbul. Combust. 76, 221240.CrossRefGoogle Scholar
Talamelli, A., Segalini, A., Orlu, R. & Buresti, G. 2013 A note on the effect of the separation wall in the initial mixing of coaxial jets. Exp. Fluids 54.CrossRefGoogle Scholar
Tammisola, O. 2012 Oscillatory sensitivity patterns for global modes in wakes. J. Fluid Mech. 701, 251277.CrossRefGoogle Scholar
Villermaux, E. & Rehab, H. 2000 Mixing in coaxial jets. J. Fluid Mech. 425, 161185.CrossRefGoogle Scholar
Williams, T. J., Ali, M. R. M. H. & Anderson, J. S. 1969 Noise and flow characteristics of coaxial jets. J. Mech. Engng Sci. 11, 133142.CrossRefGoogle Scholar
Supplementary material: File

Canton supplementary material

Canton supplementary material

Download Canton supplementary material(File)
File 44.9 MB