Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T02:33:54.039Z Has data issue: false hasContentIssue false

Isolating strain and curvature effects in premixed flame/vortex interactions

Published online by Cambridge University Press:  13 October 2017

F. Thiesset
Affiliation:
CNRS ICARE, Avenue de la Recherche Scientifique, 45072 Orléans CEDEX 2, France
F. Halter*
Affiliation:
CNRS ICARE, Avenue de la Recherche Scientifique, 45072 Orléans CEDEX 2, France
C. Bariki
Affiliation:
CNRS ICARE, Avenue de la Recherche Scientifique, 45072 Orléans CEDEX 2, France
C. Lapeyre
Affiliation:
IMF Toulouse, INP Toulouse and CNRS, 42 Avenue Camille Soula, 31400 Toulouse, France CERFACS, CFD Team, 42 Av. G. Coriolis, 31057 Toulouse CEDEX, France
C. Chauveau
Affiliation:
CNRS ICARE, Avenue de la Recherche Scientifique, 45072 Orléans CEDEX 2, France
I. Gökalp
Affiliation:
CNRS ICARE, Avenue de la Recherche Scientifique, 45072 Orléans CEDEX 2, France
L. Selle
Affiliation:
IMF Toulouse, INP Toulouse and CNRS, 42 Avenue Camille Soula, 31400 Toulouse, France
T. Poinsot
Affiliation:
IMF Toulouse, INP Toulouse and CNRS, 42 Avenue Camille Soula, 31400 Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

This study focuses on the response of premixed flames to a transient hydrodynamic perturbation in an intermediate situation between laminar stretched flames and turbulent flames: an axisymmetric vortex interacting with a flame. The reasons motivating this choice are discussed in the framework of turbulent combustion models and flame response to the stretch rate. We experimentally quantify the dependence of the flame kinematic properties (displacement and consumption speeds) to geometrical scalars (stretch rate and curvature) in flames characterized by different effective Lewis numbers. Whilst the displacement speed can be readily measured using particle image velocimetry and tomographic diagnostics, providing a reliable estimate of the consumption speed from experiments remains particularly challenging. In the present work, a method based on a budget of fuel on a well chosen domain is proposed and validated both experimentally and numerically using two-dimensional direct numerical simulations of flame/vortex interactions. It is demonstrated that the Lewis number impact neither the geometrical nor the kinematic features of the flames, these quantities being much more influenced by the vortex intensity. While interacting with the vortex, the flame displacement (at an isotherm close to the leading edge) and consumption speeds are found to increase almost independently of the type of fuel. We show that the total stretch rate is not the only scalar quantity impacting the flame displacement and consumption speeds and that curvature has a significant influence. Experimental data are interpreted in the light of asymptotic theories revealing the existence of two distinct Markstein numbers, one characterizing the dependence of flame speed to curvature, the other to the total stretch rate. This theory appears to be well suited for representing the evolution of the displacement speed with respect to either the total stretch rate, curvature or strain rate. It also explains the limited dependence of the flame displacement speed to Lewis number and the strong correlation with curvature observed in the experiments. An explicit relationship between displacement and consumption speeds is also given, indicating that the fuel consumption rate is likely to be altered by both the total stretch rate and curvature.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balusamy, S., Cessou, A. & Lecordier, B. 2011 Direct measurement of local instantaneous laminar burning velocity by a new PIV algorithm. Exp. Fluids 50 (4), 11091121.Google Scholar
Bechtold, J. K. & Matalon, M. 2001 The dependence of the markstein length on stoichiometry. Combust. Flame 127 (1), 19061913.CrossRefGoogle Scholar
Bell, J. B., Cheng, R. K., Day, M. S. & Shepherd, I. G. 2007 Numerical simulation of lewis number effects on lean premixed turbulent flames. Proc. Combust. Inst. 31 (1), 13091317.Google Scholar
Bosschaart, K. J. & De Goey, L. P. H. 2004 The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 136 (3), 261269.Google Scholar
Bougrine, S., Richard, S., Colin, O. & Veynante, D. 2014 Fuel composition effects on flame stretch in turbulent premixed combustion: Numerical analysis of flame-vortex interaction and formulation of a new efficiency function. Flow Turbul. Combust. 93 (2), 259281.CrossRefGoogle Scholar
Bouvet, N.2009, Experimental and numerical studies of the fundamental flame speeds of methane/air and syngas ( $\text{H}_{2}/\text{CO}$ )/air mixtures. PhD thesis, University of Orléans.Google Scholar
Boyer, L. 1980 Laser tomographic method for flame front movement studies. Combust. Flame 39 (3), 321323.CrossRefGoogle Scholar
Bradley, D., Gaskell, P. H. & Gu, X. J. 1996 Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combust. Flame 104, 176198.CrossRefGoogle Scholar
Candel, S. M. & Poinsot, T. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70 (1–3), 115.CrossRefGoogle Scholar
Chao, B. H., Egolfopoulos, F. N. & Law, C. K. 1997 Structure and propagation of premixed flame in nozzle-generated counterflow. Combust. Flame 109 (4), 620638.Google Scholar
Charlette, F., Meneveau, C. & Veynante, D. 2002 A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests. Combust. Flame 131 (1), 159180.CrossRefGoogle Scholar
Chen, Z., Burke, M. P. & Ju, Y. 2009 Effects of lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Combust. Inst. 32 (1), 12531260.CrossRefGoogle Scholar
Chen, J. H. & Im, H. G. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Sympos. Combust. 27 (1), 819826.Google Scholar
Chen, J. B. & Im, H. G. 2000 Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28 (1), 211218.CrossRefGoogle Scholar
Chen, Z. & Ju, Y. 2007 Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theor. Model. 11 (3), 427453.Google Scholar
Chung, S. H. & Law, C. K. 1988 An integral analysis of the structure and propagation of stretched premixed flames. Combust. Flame 72 (3), 325336.CrossRefGoogle Scholar
Clavin, P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11 (1), 159.Google Scholar
Clavin, P. & Garcia, P. J. 1983 The influence of the temperature dependence on the dynamics of flame fronts. J. Méc. 2, 245263.Google Scholar
Clavin, P. & Graña-Otero, J. C. 2011 Curved and stretched flames: the two Markstein numbers. J. Fluid Mech. 686, 187217.Google Scholar
Clavin, P. & Joulin, G. 1983 Premixed flames in large scale and high intensity turbulent flow. J. Phys. Lett. 44 (1), 112.CrossRefGoogle Scholar
Clavin, P. & Joulin, G. 1989 Flamelet library for turbulent wrinkled flames. In Turbulent Reactive Flows, Lecture Notes in Engineering, vol. 40, pp. 213240. Springer.CrossRefGoogle Scholar
Clavin, P. & Joulin, G. 1997 High-frequency response of premixed flames to weak stretch and curvature: a variable-density analysis. Combust. Theor. Model. 1, 429446.CrossRefGoogle Scholar
Clavin, P. & Williams, F. A. 1982 Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251282.Google Scholar
Colin, O., Ducros, F., Veynante, D. & Poinsot, T. 2000 A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 18431863.Google Scholar
Colin, O. & Rudgyard, M. 2000 Development of high-order Taylor–Galerkin schemes for unsteady calculations. J. Comput. Phys. 162 (2), 338371.Google Scholar
Dong, Y., Vagelopoulos, C. M., Spedding, G. R. & Egolfopoulos, F. N. 2002 Measurement of laminar flame speeds through digital particle image velocimetry: mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium. Proc. Combust. Inst. 29 (2), 14191426.Google Scholar
Durox, D., Baillot, F., Searby, G. & Boyer, L. 1997 On the shape of flames under strong acoustic forcing: a mean flow controlled by an oscillating flow. J. Fluid Mech. 350, 295310.Google Scholar
Echekki, T. & Chen, J. H. 1996 Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106 (1), 184202.Google Scholar
Egolfopoulos, F. N., Zhang, H. & Zhang, Z. 1997 Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust. Flame 109 (1), 237252.Google Scholar
Fogla, N., Creta, F. & Matalon, M. 2015 Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162 (7), 27582777.Google Scholar
Fogla, N., Creta, F. & Matalon, M. 2017 The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory versus experiments. Combust. Flame 175, 155169.Google Scholar
Giannakopoulos, G. K., Gatzoulis, A., Frouzakis, C. E., Matalon, M. & Tomboulides, A. G. 2015a Consistent definitions of flame displacement speed and markstein length for premixed flame propagation. Combust. Flame 162 (4), 12491264.Google Scholar
Giannakopoulos, G. K., Matalon, M., Frouzakis, C. E. & Tomboulides, A. G. 2015b The curvature markstein length and the definition of flame displacement speed for stationary spherical flames. Proc. Combust. Inst. 35 (1), 737743.Google Scholar
Halter, F., Tahtouh, T. & Mounaïm-Rousselle, C. 2010 Nonlinear effects of stretch on the flame front propagation. Combust. Flame 157 (10), 18251832.CrossRefGoogle Scholar
Haworth, D. C. & Poinsot, T. J. 1992 Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405436.Google Scholar
Im, H. G. & Chen, J. H. 2000 Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flames. Proc. Combust. Inst. 28 (2), 18331840.Google Scholar
Joulin, G. 1994 On the response of premixed flames to time-dependent stretch and curvature. Combust. Sci. Technol. 97 (1–3), 219229.Google Scholar
Karlovitz, B., Denniston, D. W., Knapschaefer, D. H. & Wells, F. E. 1953 Studies on turbulent flames: A. flame propagation across velocity gradients b. turbulence measurement in flames. Sympos. Combust. 4 (1), 613620.Google Scholar
Kerl, J., Lawn, C. & Beyrau, F. 2013 Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV. Combust. Flame 160 (12), 27572769.CrossRefGoogle Scholar
Kim, S. H. 2017 Leading points and heat release effects in turbulent premixed flames. Proc. Combust. Inst. 36 (2), 20172024.CrossRefGoogle Scholar
Lefebvre, A., Larabi, H., Moureau, V., Lartigue, G., Varea, E., Modica, V. & Renou, B. 2016 Formalism for spatially averaged consumption speed considering spherically expanding flame configuration. Combust. Flame 173, 235244.CrossRefGoogle Scholar
Lipatnikov, A. N. & Chomiak, J. 2005 Molecular transport effects on turbulent flame propagation and structure. Prog. Energ. Combust. 31 (1), 173.Google Scholar
Lu, T. & Law, C. K. 2008 A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154 (4), 761774.Google Scholar
Mantel, T. & Samaniego, J. M. 1999 Fundamental mechanisms in premixed turbulent flame propagation via flame vortex interactions. Part 2: Numerical simulation. Combust. Flame 118, 557582.Google Scholar
Markstein, G. H. 1964 Nonsteady Flame Propagation, vol. 75. Elsevier.Google Scholar
Matalon, M. & Bechtold, J. K. 2009 A multi-scale approach to the propagation of non-adiabatic premixed flames. J. Engng Maths 63 (2–4), 309326.CrossRefGoogle Scholar
Matalon, M., Cui, C. & Bechtold, J. K. 2003 Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179210.Google Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.Google Scholar
Moureau, V., Fiorina, B. & Pitsch, H. 2009 A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156 (4), 801812.Google Scholar
Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O. & Poinsot, T. 2005 Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202 (2), 710736.Google Scholar
Mueller, C. J., Driscoll, J. F., Reuss, D. L. & Drake, M. C. 1996 Effects of unsteady stretch on the strength of a freely-propagating flame wrinkled by a vortex. Sympos. Combust. 26, 347355.Google Scholar
Najm, H. N., Paul, P. H., Mueller, C. J. & Wyckoff, P. S. 1998 On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame 113 (3), 312332.CrossRefGoogle Scholar
Oberlack, M., Wenzel, H. & Peters, N. 2001 On symmetries and averaging of the G-equation for premixed combustion. Combust. Theor. Model. 5, 363383.Google Scholar
Otsu, N. 1979 A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 6266.CrossRefGoogle Scholar
Peters, N. 1986 Laminar flamelet concepts in turbulent combustion. Sympos. Combust. 21 (1), 12311250.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.Google Scholar
Peters, N. 2009 Multiscale combustion and turbulence. Proc. Combust. Inst. 32, 125.Google Scholar
Pitsch, H. 2005 A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143 (4), 587598.Google Scholar
Poinsot, T. 1998 Comments on flame stretch interactions of laminar premixed hydrogen air flames at normal temperature and pressure by Aung et al. Combust. Flame 113, 279284.Google Scholar
Poinsot, T. & Lele, S. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 2nd edn. RT Edwards, Inc.Google Scholar
Poinsot, T. & Veynante, D. 2011 Theoretical and Numerical Combustion, 3rd edn; http://elearning.cerfacs.fr/combustion.Google Scholar
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.Google Scholar
Renard, P.-H., Thevenin, D., Rolon, J.-C. & Candel, S. 2000 Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26 (3), 225282.Google Scholar
Renou, B., Boukhalfa, A., Puechberty, D. & Trinité, M. 1998 Effects of stretch on the local structure of preely propagating premixed low-turbulent flames with various Lewis numbers. In Symposium (International) on Combustion, vol. 27, pp. 841847. Elsevier.Google Scholar
Renou, B., Boukhalfa, A., Puechberty, D. & Trinité, M. 2000 Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame 123 (4), 507521.Google Scholar
Roberts, W. L. & Driscoll, J. F. 1991 A laminar vortex interacting with a premixed flame: measured formation of pockets of reactants. Combust. Flame 87 (3), 245256.Google Scholar
Roberts, W. L., Driscoll, J. F., Drake, M. C. & Goss, L. P. 1993 Images of the quenching of a flame by a vortex to quantify regimes of turbulent combustion. Combust. Flame 94 (1), 5869.Google Scholar
Rutland, C. J. & Trouvé, A. 1993 Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94 (1), 4157.Google Scholar
Samaniego, J. M. & Mantel, T. 1999 Fundamental mechanisms in premixed turbulent flame propagation via flame vortex interactions. Part I: Experiment. Combust. Flame 118, 537556.Google Scholar
Schønfeld, T. & Rudgyard, M. 1999 Steady and unsteady flows simulations using the hybrid flow solver AVBP. AIAA J. 37 (11), 13781385.Google Scholar
Shepherd, I. G. & Kostiuk, L. W. 1994 The burning rate of premixed turbulent flames in divergent flows. Combust. Flame 96 (4), 371380.Google Scholar
Sinibaldi, J. O., Driscoll, J. F., Mueller, C. J., Donbar, J. M. & Carter, C. D. 2003 Propagation speeds and stretch rates measured along wrinkled flames to assess the theory of flame stretch. Combust. Flame 133 (3), 323334.CrossRefGoogle Scholar
Sinibaldi, J. O., Mueller, C. J. & Driscoll, J. F. 1998 Local flame propagation speeds along wrinkled, unsteady, stretched premixed flames. In Symposium (International) on Combustion, vol. 27, pp. 827832. Elsevier.Google Scholar
Steinberg, A. M. & Driscoll, J. F. 2010 Stretch-rate relationships for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics. Combust. Flame 157 (7), 14221435.Google Scholar
Thielicke, W. & Stamhuis, E. J. 2014 PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Research Software 2 (1), 30.Google Scholar
Thiesset, F., Maurice, G., Halter, F., Mazellier, N., Chauveau, C. & Gökalp, I. 2017 Flame-vortex interaction: Effect of residence time and formulation of a new efficiency function. Proc. Combust. Inst. 36, 18431851.Google Scholar
Trouvé, A. & Poinsot, T. 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 131.Google Scholar
Vagelopoulos, C. M. & Egolfopoulos, F. N. 1998 Direct experimental determination of laminar flame speeds. Sympos. Combust. 27 (1), 513519.Google Scholar
Vagelopoulos, C. M., Egolfopoulos, F. N. & Law, C. K. 1994 Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Sympos. Combust. 25 (1), 13411347.Google Scholar
Varea, E.2013 Experimental analysis of laminar spherically expanding flames. PhD thesis, INSA Rouen.Google Scholar
Veynante, D. & Vervisch, L. 2002 Turbulent combustion modeling. Prog. Energ. Combust. 28 (3), 193266.CrossRefGoogle Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2007 Vorticity and Vortex Dynamics. Springer.Google Scholar
Zhang, F., Zirwes, T., Habisreuther, P. & Bockhorn, H. 2017 Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170179.CrossRefGoogle Scholar