Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T02:08:05.998Z Has data issue: false hasContentIssue false

Inertial-range transfer in two- and three-dimensional turbulence

Published online by Cambridge University Press:  29 March 2006

Robert H. Kraichnan
Affiliation:
Dublin, New Hampshire, U.S.A.

Abstract

A simple dynamical argument suggests that the k−3 enstrophy-transfer range in two-dimensional turbulence should be corrected to the form \[ E(k) = C^{\prime} \beta^{\frac{21}{3}}k^{-3}[\ln (k/k_1)]^{-\frac{1}{3}}\quad (k \gg k_1), \] where E(k) is the usual energy-spectrum function, β is the rate of enstrophy transfer per unit mass, C′ is a dimensionless constant, and k1 marks the bottom of the range, where enstrophy is pumped in. Transfer in the energy and enstrophy inertial ranges is computed according to an almost-Markovian Galilean-in variant turbulence model. Transfer in the two-dimensional energy inertial range, \[ E(k) = C\epsilon^{\frac{2}{3}}k^{-\frac{5}{3}}, \] is found to be much less local than in three dimensions, with 60 % of the transfer coming from wave-number triads where the smallest wave-number is less than one-fifth the middle wave-number. The turbulence model yields the estimates C′ = 2·626, C = 6·69 (two dimensions), C = 1·40 (three dimensions).

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1953 Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K. 1969 Phys. Fluids, 12, II233.
Edwards, S. F. 1964 J. Fluid Mech. 18, 239.
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 J. Fluid Mech. 12, 241.
Herring, J. 1965 Phys. Fluids, 8, 2219.
Herring, J. 1966 Phys. Fluids, 9, 2106.
Kraichnan, R. H. 1964 Phys. Fluids, 7, 1163.
Kraichnan, R. H. 1966 Phys. Fluids, 9, 1728.
Kraichnan, R. H. 1967 Phys. Fluids, 10, 1417.
Kraichnan, R. H. 1968 Phys. Fluids, 11, 945.
Kraichnan, R. H. 1971 J. Fluid Mech. 47, 513.
Leith, C. E. Phys. Fluids, 11, 671.
Lilly, D. K. 1969 Phys. Fluids, 12, II240.
Proudman, I. & Reid, W. H. 1954 Phil. Trans. A, 247, 163.
Tatsumi, T. 1957 Proc. Roy. Soc. A, 239, 16.