Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:06:11.994Z Has data issue: false hasContentIssue false

Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus

Published online by Cambridge University Press:  06 October 2015

Anthony Randriamampianina*
Affiliation:
Laboratoire Mécanique, Modélisation et Procédés Propres, UMR 7340 CNRS, Aix Marseille Université, Centrale Marseille, Technopôle Château-Gombert. 38, rue F. Joliot-Curie, 13451 Marseille CEDEX 20, France
Emilia Crespo del Arco
Affiliation:
Departamento de Física Fundamental, UNED, Apartado 60.141, E-28080Madrid, Spain
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations based on high-resolution pseudospectral methods are carried out for detailed investigation into the instabilities arising in a differentially heated, rotating annulus, the baroclinic cavity. Following previous works using air (Randriamampianina et al.J. Fluid Mech., vol. 561, 2006, pp. 359–389), a liquid defined by Prandtl number $Pr=16$ is considered in order to better understand, via the Prandtl number, the effects of fluid properties on the onset of gravity waves. The computations are particularly aimed at identifying and characterizing the spontaneously emitted small-scale fluctuations occurring simultaneously with the baroclinic waves. These features have been observed as soon as the baroclinic instability sets in. A three-term decomposition is introduced to isolate the fluctuation field from the large-scale baroclinic waves and the time-averaged mean flow. Even though these fluctuations are found to propagate as packets, they remain attached to the background baroclinic waves, locally triggering spatio-temporal chaos, a behaviour not observed with the air-filled cavity. The properties of these features are analysed and discussed in the context of linear theory. Based on the Richardson number criterion, the characteristics of the generation mechanism are consistent with a localized instability of the shear zonal flow, invoking resonant over-reflection.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansong, J. K. & Sutherland, B. R. 2010 Internal gravity waves generated by convective plumes. J. Fluid Mech. 648, 405434.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30, 507538.CrossRefGoogle Scholar
Bergholz, R. F. 1978 Instability of steady natural convection in a vertical fluid layer. J. Fluid Mech. 84 (4), 743768.Google Scholar
Booker, J. R. & Bretherton, F. P. 1967 The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27, 513539.Google Scholar
Borchert, S., Achatz, U. & Fruman, M. D. 2014 Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment. J. Fluid Mech. 758, 287311.CrossRefGoogle Scholar
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1987 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Castrejón-Pita, A. A. & Read, P. L. 2007 Baroclinic waves in an air-filled thermally driven rotating annulus. Phys. Rev. E 75, 026301.CrossRefGoogle Scholar
Chaouche, A. M., Randriamampianina, A. & Bontoux, P. 1990 A collocation method based on an influence matrix technique for axisymmetric flows in an annulus. Comput. Meth. Appl. Mech. Engng 80, 237244.CrossRefGoogle Scholar
Dritschel, D. G. & Viúdez, A. 2003 A balanced approach to modelling rotating stably stratified geophysical flows. J. Fluid Mech. 488, 123150.Google Scholar
Edwards, N. R. & Staquet, C. 2005 Focusing of an inertia–gravity wave packet by a baroclinic shear flow. Dyn. Atmos. Oceans 40, 91113.Google Scholar
Fein, J. S. & Pfeffer, R. L. 1976 An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid. J. Fluid Mech. 75, 81112.Google Scholar
Ford, R. 1994 Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 281, 81118.CrossRefGoogle Scholar
Fowlis, W. W. & Hide, R. 1965 Thermal convection in a rotating annulus of liquid: effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci. 22, 541558.Google Scholar
Fritts, D. C. & Alexander, J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41 (1), 1003.CrossRefGoogle Scholar
Früh, W.-G. & Read, P. L. 1997 Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus. Phil. Trans. R. Soc. Lond. A 355, 101153.CrossRefGoogle Scholar
Gill, A. 1982 Atmosphere Ocean Dynamics, International Geophysics Series, vol. 30. Academic.Google Scholar
Gill, A. E. & Davey, A. 1969 Instabilities of a buoyancy-driven system. J. Fluid Mech. 35, 775798.CrossRefGoogle Scholar
Gottlieb, D. & Orszag, S. 1977 Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM.Google Scholar
Haldenwang, P., Labrosse, G., Abboudi, S. & Deville, M. 1984 Chebyshev 3D spectral and 2D pseudospectral solvers for the Helmholtz equation. J. Comput. Phys. 55, 115128.Google Scholar
Hide, R. 1958 An experimental study of thermal convection in a rotating fluid. Phil. Trans. R. Soc. Lond. A 250, 441478.Google Scholar
Hide, R. & Mason, P. J. 1975 Sloping convection in a rotating fluid. Adv. Phys. 24, 47100.Google Scholar
Hide, R. & Mason, P. J. 1978 On the transition between axisymmetric and non-axisymmetric flow in a rotating liquid annulus subject to a horizontal temperature gradient. Geophys. Astrophys. Fluid Dyn. 10, 121156.Google Scholar
Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M. 1985 A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Q. J. R. Meteorol. Soc. 111, 131154.CrossRefGoogle Scholar
Hugues, S. & Randriamampianina, A. 1998 An improved projection scheme applied to pseudospectral methods for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 28, 501521.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Jacoby, T. N. L., Read, P. L., Williams, P. D. & Young, R. M. B. 2011 Generation of inertia–gravity waves in the rotating thermal annulus by a localised boundary layer instability. Geophys. Astrophys. Fluid Dyn. 105, 161181.Google Scholar
Jonas, P. R. 1981 Some effects of boundary conditions and fluid properties on vacillation in thermally driven rotating flow in an annulus. Geophys. Astrophys. Fluid Dyn. 18, 123.CrossRefGoogle Scholar
Koschmieder, E. L. & White, H. D. 1981 Convection in a rotating, laterally heated annulus: the wave number transitions. Geophys. Astrophys. Fluid Dyn. 18, 279299.Google Scholar
Leaman, K. D. & Sanford, T. B. 1975 Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res. 80 (15), 19751978.CrossRefGoogle Scholar
LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean, Elsevier Oceanography Series. Elsevier.Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Lindzen, R. S. 1974 Stability of a Helmholtz velocity profile in a continuously stratified, infinite Boussinesq fluid: applications to clear air turbulence. J. Atmos. Sci. 31, 15071514.Google Scholar
Lindzen, R. S. 1984 Gravity waves in the mesosphere. In Dynamics of the Middle Atmosphere (ed. Holton, J. R. & Matsuno, T.). Terra Scientific Publishing Company.Google Scholar
Lindzen, R. S. & Rosenthal, A. J. 1976 On the instability of Helmholtz velocity profiles in stably stratified fluids when a lower boundary is present. J. Geophys. Res. 81, 15611571.Google Scholar
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.CrossRefGoogle Scholar
Lott, F., Kelder, H. & Teitelbaum, H. 1992 A transition from Kelvin–Helmholtz instabilities to propagating wave instabilities. Phys. Fluids A 4 (9), 19901997.CrossRefGoogle Scholar
Miropol’sky, Y. Z. 2001 Dynamics of Internal Gravity Waves in the Ocean (ed. Shishkina, O. D.), Atmospheric and Oceanographic Sciences Library, vol. 24. Springer.Google Scholar
Nappo, C. J. 2003 An introduction to Atmospheric Gravity Waves, International Geophysics Series, vol. 85. Academic.Google Scholar
Orlanski, I. & Cox, M. D. 1973 Baroclinic instability in ocean currents. Geophys. Fluid Dyn. 4, 297332.Google Scholar
O’Sullivan, D. & Dunkerton, T. J. 1995 Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos Sci. 52, 36953716.Google Scholar
Pàllas-Sanz, E. & Viúdez, A. 2008 Spontaneous generation of inertia–gravity waves during the merging of two baroclinic anticyclones. J. Phys. Oceanogr. 38 (1), 213234.Google Scholar
Pierrehumbert, R. T. & Swanson, K. L. 1995 Baroclinic instability. Annu. Rev. Fluid Mech. 27, 419467.Google Scholar
Plougonven, R. & Snyder, C. 2007 Inertia–gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles. J. Atmos Sci. 64, 25022520.Google Scholar
Plougonven, R. & Zhang, F. 2014 Internal gravity waves from atmospheric jets and fronts. Rev. Geophys. 52, 3376.CrossRefGoogle Scholar
Randriamampianina, A. 2013 Inertia-gravity waves characteristics within a baroclinic cavity. C. R. Méc. 341, 547552.CrossRefGoogle Scholar
Randriamampianina, A. & Crespo del Arco, E. 2014 High-resolution method for direct numerical simulation of instability and transition in baroclinic cavity. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, 1st edn. (ed. von Larcher, T. & Williams, P. D.), Geophysical Monograph, vol. 205. chap. 16, pp. 297–313. John Wiley & Sons; American Geophysical Union.Google Scholar
Randriamampianina, A., Früh, W.-G., Maubert, P. & Read, P. L. 2006 Direct numerical simulations of bifurcations in an air-filled rotating baroclinic annulus. J. Fluid Mech. 561, 359389.CrossRefGoogle Scholar
Randriamampianina, A., Leonardi, E. & Bontoux, P. 1997 A numerical study of the effects of Coriolis and centrifugal forces on buoyancy driven flows in a vertical rotating annulus. In Advances in Computational Heat Transfer (ed. De Vahl Davis, G. & Leonardi, E.). Begell House; CHT97.Google Scholar
Randriamampianina, A., Schiestel, R. & Wilson, M. 2001 Spatio-temporal behaviour in an enclosed corotating disk pair. J. Fluid Mech. 434, 3964.Google Scholar
Randriamampianina, A., Schiestel, R. & Wilson, M. 2004 The turbulent flow in an enclosed corotating disk pair: axisymmetric numerical simulation and Reynolds stress modelling. Intl J. Heat Fluid Flow 25, 897914.CrossRefGoogle Scholar
Raspo, I., Hugues, S., Serre, E., Randriamampianina, A. & Bontoux, P. 2002 A spectral projection method for the simulation of complex three-dimensional rotating flows. Comput. Fluids 31, 745767.CrossRefGoogle Scholar
Read, P. L. 1992 Applications of singular systems analysis to baroclinic chaos. Physica D 58, 455468.CrossRefGoogle Scholar
Read, P. L. 2001 Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surv. Geophys. 22, 265317.Google Scholar
Read, P. L., Bell, M. J., Johnson, D. W. & Small, R. M. 1992 Quasi-periodic and chaotic flow regimes in a thermally-driven, rotating fluid annulus. J. Fluid Mech. 238, 599632.CrossRefGoogle Scholar
Read, P. L., Collins, M., Früh, W.-G., Lewis, S. R. & Lovegrove, A. F. 1998 Wave interactions and baroclinic chaos: a paradigm for long timescale variability in planetary atmospheres. Chaos, Solitons Fractals 9, 231249.Google Scholar
Read, P. L., Maubert, P., Randriamampianina, A. & Früh, W.-G. 2008 Direct numerical simulation of transitions towards structural vacillation in an air-filled, rotating, baroclinic annulus. Phys. Fluids 20, 044107.Google Scholar
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.CrossRefGoogle Scholar
Tateno, S. & Sato, K. 2008 A study of inertia–gravity waves in the middle stratosphere based on intensive radiosonde observations. J. Met. Soc. Japan 86 (5), 719732.CrossRefGoogle Scholar
Thomas, L., Worthingthon, R. M. & McDonald, J. M. 1999 Inertia–gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Ann. Geophys. 17, 115121.Google Scholar
Thompson, R. 1978 Observation of inertial waves in stratosphere. Q. J. R. Meteorol. Soc. 104, 691698.Google Scholar
Vanel, J. M., Peyret, R. & Bontoux, P. 1986 A pseudospectral solution of vorticity-streamfunction equations using the influence matrix technique. In Numerical Methods in Fluid Dynamics II (ed. Morton, K. W. & Baines, M. J.), pp. 463475. Clarendon.Google Scholar
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45, 147172.CrossRefGoogle Scholar
Viúdez, A. & Dritschel, D. G. 2006 Spontaneous generation of inertia-gravity wave packets by balanced geophysical flows. J. Fluid Mech. 553, 107117.Google Scholar
Williams, G. P. 1971 Baroclinic annulus waves. J. Fluid Mech. 49, 417449.Google Scholar
Williams, G. P. 1972 The field distributions and balances in a baroclinic annulus wave. Mon. Weath. Rev. 100, 2941.Google Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid. Mech. 528, 122.Google Scholar
Williams, P. D., Read, P. L. & Haine, T. W. N. 2003 Spontaneous generation and impact of inertia–gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett. 30 (24), 2255.CrossRefGoogle Scholar
Wordsworth, R. D.2009, Theoretical and experimental investigations of turbulent jet formation in planetary fluid dynamics. PhD thesis, Linacre College, Oxford, UK.Google Scholar
Zang, T. A. 1990 Spectral methods for simulations of transition and turbulence. Comput. Meth. Appl. Mech. Engng 80, 209221.CrossRefGoogle Scholar
Zhang, F. 2004 Generation of mesoscale gravity waves in upper-tropospheric jetfront systems. J. Atmos. Sci. 61, 440457.Google Scholar