Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T07:21:44.323Z Has data issue: false hasContentIssue false

Gyrotactic swimmers in turbulence: shape effects and role of the large-scale flow

Published online by Cambridge University Press:  09 October 2018

M. Borgnino*
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy
G. Boffetta
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy
F. De Lillo
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy
M. Cencini*
Affiliation:
Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italyand INFN ‘Tor Vergata’
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 27902793.Google Scholar
Bearon, R. N., Bees, M. A. & Croze, O. A. 2012 Biased swimming cells do not disperse in pipes as tracers: a population model based on microscale behaviour. Phys. Fluids 24 (12), 121902.Google Scholar
Bec, J. 2003 Fractal clustering of inertial particles in random flows. Phys. Fluids 15, L81L84.Google Scholar
Cencini, M., Franchino, M., Santamaria, F. & Boffetta, G. 2016 Centripetal focusing of gyrotactic phytoplankton. J. Theor. Biol. 399, 6270.Google Scholar
Croze, O. A., Sardina, G., Ahmed, M., Bees, M. A. & Brandt, L. 2013 Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. J. R. Soc. Interface 10 (81), 20121041.Google Scholar
De Lillo, F., Cencini, M., Durham, W. M., Barry, M., Stocker, R., Climent, E. & Boffetta, G. 2014 Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. Phys. Rev. Lett. 112, 044502.Google Scholar
Durham, W. M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4, 2148.Google Scholar
Durham, W. M., Kessler, J. O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323, 10671070.Google Scholar
Elgeti, J., Winkler, R. G. & Gompper, G. 2015 Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 78 (5), 056601.Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419 (6903), 151154.Google Scholar
Fouxon, I. & Leshansky, A. 2015 Phytoplankton’s motion in turbulent ocean. Phys. Rev. E 92 (1), 013017.Google Scholar
Guasto, J. S., Johnson, K. A. & Gollub, J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (16), 168102.Google Scholar
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.Google Scholar
Gustavsson, K., Berglund, F., Jonsson, P. R. & Mehlig, B. 2016 Preferential sampling and small-scale clustering of gyrotactic microswimmers in turbulence. Phys. Rev. Lett. 116, 108104.Google Scholar
Harvey, E. L., Menden-Deuer, S. & Rynearson, T. A. 2015 Persistent intra-specific variation in genetic and behavioral traits in the raphidophyte, Heterosigma akashiwo . Front. Microbiol. 6, 1277.Google Scholar
Hill, N. A. & Häder, D. P. 1997 A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186 (4), 503526.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Kessler, J. O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313 (5999), 218220.Google Scholar
Khurana, N., Blawzdziewicz, J. & Ouellette, N. T. 2011 Reduced transport of swimming particles in chaotic flow due to hydrodynamic trapping. Phys. Rev. Lett. 106 (19), 198104.Google Scholar
Kiørboe, T. 2008 A Mechanistic Approach to Plankton Ecology. Princeton University Press.Google Scholar
Marchetti, M. C., Joanny, J.-F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 11431189.Google Scholar
Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. 2010 Microrobots for minimally invasive medicine. Ann. Rev. Biomed. Engng 12, 5585.Google Scholar
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.Google Scholar
Polin, M., Tuval, I., Drescher, K., Gollub, J. P. & Goldstein, R. E. 2009 Chlamydomonas swims with two ‘gears’ in a eukaryotic version of run-and-tumble locomotion. Science 325, 487490.Google Scholar
Rusconi, R., Guasto, J. S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212217.Google Scholar
Santamaria, F., De Lillo, F., Cencini, M. & Boffetta, G. 2014 Gyrotactic trapping in laminar and turbulent Kolmogorov flow. Phys. Fluids 26 (11), 111901.Google Scholar
Sengupta, A., Carrara, F. & Stocker, R. 2017 Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543 (7646), 555558.Google Scholar
Ten Hagen, B., Kümmel, F., Wittkowski, R., Takagi, D., Löwen, H. & Bechinger, C. 2014 Gravitaxis of asymmetric self-propelled colloidal particles. Nat. Commun. 5, 4829.Google Scholar
Thorpe, S. A. 2007 An Introduction to Ocean Turbulence. Cambridge University Press.Google Scholar
Torney, C. & Neufeld, Z. 2007 Transport and aggregation of self-propelled particles in fluid flows. Phys. Rev. Lett. 99, 078101.Google Scholar
Torney, C. & Neufeld, Z. 2008 Phototactic clustering of swimming microorganisms in a turbulent velocity field. Phys. Rev. Lett. 101, 078105.Google Scholar
Zhan, C., Sardina, G., Lushi, E. & Brandt, L. 2014 Accumulation of motile elongated micro-organisms in turbulence. J. Fluid Mech. 739, 2236.Google Scholar