Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T04:08:09.369Z Has data issue: false hasContentIssue false

Fractional dynamics of tethered particles in oscillatory Stokes flows

Published online by Cambridge University Press:  07 April 2014

Edwin A. Lim
Affiliation:
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Marcelo H. Kobayashi
Affiliation:
Department of Mechanical Engineering, College of Engineering, University of Hawaii at Mānoa, Honolulu, HI 96822, USA
Carlos F. M. Coimbra*
Affiliation:
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: [email protected]

Abstract

A mechanistic model for the low-Reynolds-, high-Strouhal-number behaviour of a system consisting of a spherical particle attached to an inelastic tether under uniform sinusoidal cross-flow is presented. Unsteady history drag and virtual mass effects are considered for both the sphere and the tether. The mechanics of the problem is such that the resulting coupled fractional differential equations are linear and solvable analytically. The stationary solutions obtained in this work show that there are limiting dimensions for the length and thickness of the tether when compared to the radius of the particle that allow for the motion of the particle–tether system to simulate the motion of a free particle. These conditions exist for the range of small oscillation amplitudes that are required for keeping the particle Reynolds number smaller than unity while oscillating the particle–tether system at high frequencies (Strouhal numbers larger than unity). The fractional order model for the particle–tether system is compared against detailed experimental results for tethered particles for a wide range of experimental frequencies, including the low-frequency range where tether effects are measurable.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbad, M. & Souhar, M. 2004 Experimental investigation on the history force acting on oscillating fluid spheres at low Reynolds number. Phys. Fluids 16, 38083817.Google Scholar
Basset, A. B. 1888 On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. Lond. A 179, 4363.Google Scholar
Boussinesq, J. 1885 Sur la résistance qu’oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
Candelier, F., Angilella, J. R. & Souhar, M. 2004 On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex. Phys. Fluids 16, 17651776.Google Scholar
Candelier, F. & Souhar, M. 2007 Time-dependent lift force acting on a particle moving arbitrarily in a pure shear flow, at small Reynolds number. Phys. Rev. E 76, 067301.Google Scholar
Chao, B. T. 1968 Turbulent transport behaviour of small particles in dilute suspension. Ósterreich. Ing.-Arch. 18, 721.Google Scholar
Coimbra, C. F. M. 2003 Mechanics with variable-order differential operators. Ann. Phys. 12, 692703.Google Scholar
Coimbra, C. F. M. & Kobayashi, M. H. 2002 On the viscous motion of a small particle in a rotating cylinder. J. Fluid Mech. 469, 257286.Google Scholar
Coimbra, C. F. M., L’Espérance, D., Lambert, R. A., Trolinger, J. D. & Rangel, R. H. 2004 An experimental study on stationary history effects in high-frequency Stokes flows. J. Fluid Mech. 504, 353363.Google Scholar
Coimbra, C. F. M. & Rangel, R. H. 1998 General solution of the particle momentum equation in unsteady Stokes flow. J. Fluid Mech. 370, 5372.Google Scholar
Coimbra, C. F. M. & Rangel, R. H. 2001 Spherical particle motion in harmonic Stokes flows. AIAA J. 39 (9), 16731682.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Hjelmfelt, A. T. & Mockros, L. F. 1966 Motion of discrete particles in turbulent fluid. Appl. Sci. Res. 16, 148161.Google Scholar
Hwang, W. T. & Eaton, J. K. 2006 Homogeneous and isotropic turbulence modulation by small heavy ( $St \sim 50$ ) particles. J. Fluid Mech. 564, 361393.Google Scholar
Kim, I., Elghobashi, S. E. & Sirignano, W. A. 1998 On the equation of motion for spherical-particle motion: effects of Reynolds and acceleration numbers. J. Fluid Mech. 367, 221253.CrossRefGoogle Scholar
L’Espérance, D., Coimbra, C. F. M., Trolinger, J. D. & Rangel, R. H. 2005 Experimental verification of fractional history effects on the viscous dynamics of small spherical particles. Exp. Fluids 38, 112116.Google Scholar
L’Espérance, D., Trolinger, J. D., Coimbra, C. F. M. & Rangel, R. H. 2006 Particle response to low-Reynolds-number oscillation of a fluid in microgravity. AIAA J. 44, 10601064.Google Scholar
Mei, R. W. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.Google Scholar
Mei, R. W., Lawrence, C. J. & Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J. Fluid Mech. 233, 613631.Google Scholar
Morrison, F. A. & Stewart, M. B. 1976 Small bubble motion in an accelerating fluid. J. Appl. Mech. 97, 399402.Google Scholar
Pedro, H. T. C., Kobayashi, M. H., Pereira, J. M. C. & Coimbra, C. F. M. 2008 Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 822827.Google Scholar
Podlubny, I. 1999 Fractional Differential Equations. Academic Press.Google Scholar
Sherman, F. S. 1990 Viscous Flow. McGraw-Hill.Google Scholar
Tchen, C. M.1947 Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Doctoral dissertation, Delft University, The Hague.Google Scholar
Weinstein, J. A., Kassoy, D. R. & Bell, M. J. 2008 Experimental study of oscillatory motion of particles and bubbles with applications to Coriolis flow meters. Phys. Fluids 20, 103306.CrossRefGoogle Scholar