Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T18:35:06.693Z Has data issue: false hasContentIssue false

The fluid mechanics of solidification

Published online by Cambridge University Press:  26 April 2006

Herbert E. Huppert
Affiliation:
Institute of Theoretical Geophysics and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW. UK

Abstract

Intense fluid motions can be generated by the solidification of a binary liquid. This review paper describes systematically some of the concepts involved in the fluid mechanics of solidification. It also presents quantitative calculations for the fluid motion, the rate of growth of solid and the evolution of both the thermal and the compositional fields in various geometries. The results of many of the calculations are favourably compared with data from laboratory experiments using aqueous solutions.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananth, R. & Gill, W. N., 1988 The effect of convection on axisymmetric parabolic dendrites. Chem. Engng. Commun. 68, 114.Google Scholar
Ananth, R. & Gill, W. N., 1989 Dendritic growth of an elliptical paraboloid with forced convection in the melt. J. Fluid Mech. 208, 575593.Google Scholar
Baines, W. D. & Turner, J. S., 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37, 5180.Google Scholar
Baines, W. D., Turner, J. S. & Campbell, I. H., 1990 Turbulent fountains in an open chamber. J. Fluid Mech. 212, 557592.Google Scholar
Batchelor, G. K.: 1974 Transport properties of two-phase materials with random structure. Ann. Rev. Fluid Mech. 6, 227255.Google Scholar
Braginskii, S. I.: 1963 Structure of the F layer and reasons for convection in the Earth's core. Sov. Phys. Dokl. 149, 810.Google Scholar
Brandeis, G. & Jaupart, C., 1986 On the interaction between convection and crystallization in cooling magma chambers. Earth Planet. Sci. Lett. 77, 345361.Google Scholar
Brown, R. A.: 1988 Theory of transport processes in single crystal growth from the melt. AIChEJ. 34, 881911.Google Scholar
Canright, D. & Davis, S. H., 1989 Similarity solutions for phase-change problems. Metall. Trans. A 20, 225235.Google Scholar
Carslaw, H. S. & Jaeger, J. C., 1959 Conduction of Heat in Solids. Cambridge University Press.
Chapman, A. J.: 1984 Heat Transfer. Macmillan.
Chen, C.-F. & Turner, J. S. 1980 Crystallization in a double-diffusive system. J. Geophys. Res. 85, 25732593.Google Scholar
Copley, S. M., Giamei, A. F., Johnson, S. M. & Hornbecker, M. F., 1970 The origin of freckles in unidirectionally solidified castings. Metall. Trans. 1, 21932204.Google Scholar
Coriell, S. R., Cordes, M. R., Boettinger, W. J. & Sekerka, R. F., 1980 Convective and interfacial instabilities during unidirectional solidification of a binary alloy. J. Cryst. Growth 49, 1328.Google Scholar
Coriell, S. R., McFadden, G. B. & Sekerka, R. F., 1985 Cellular growth during directional solidification. Ann. Rev. Mater. Sci. 15, 119145.Google Scholar
Crank, J.: 1984 Free- and Moving-Boundary Problems. Clarendon.
Davis, S. H.: 1990 Hydrodynamic interactions in directional solidification. J. Fluid Mech. 212, 241262.Google Scholar
Davis, S. H., Müller, U. & Dietsche, C. 1984 Pattern selection in single-component systems coupling Bénard convection and solidification. J. Fluid Mech. 144, 133157.Google Scholar
Dietsche, C. & Müller, U. 1985 Influence of Bénard convection on solid-liquid interfaces. J. Fluid Mech. 161, 249268.Google Scholar
Flood, S. & Hunt, J. D., 1987 A model of a casting. Appl. Sci. Res. 44, 2742.Google Scholar
Fowler, A. C.: 1985 The formation of freckles in binary alloys. IMA J. Appl. Maths 35, 159174.Google Scholar
Gleick, J.: 1988 Chaos. Heinemann.
Glicksman, M. E., Coriell, S. R. & McFadden, G. B., 1986 Interaction of flows with the crystal-melt interface. Ann. Rev. Fluid Mech. 18, 307335.Google Scholar
Hebditch, D. J.: 1975 Contribution concerning the solidification problem. In Moving Boundary Problems in Heat Flow and Diffusion (ed. J. R. Ockendon & W. R. Hodgkins). Clarendon.
Hill, J. M.: 1987 One-dimensional Stefan Problems: An Introduction. Longman.
Hills, R. N., Loper, D. E. & Roberts, P. H., 1983 A thermodynamically consistent model of a mushy zone. Q. J. Appl. Maths 36, 505539.Google Scholar
Huppert, H. E.: 1986 The intrusion of fluid mechanics into geology. J. Fluid Mech. 173, 557594.Google Scholar
Huppert, H. E. & Sparks, R. S. J. 1988 Melting the roof of a chamber containing a hot, turbulently convecting fluid. J. Fluid Mech. 188, 107131.Google Scholar
Huppert, H. E., Sparks, R. S. J., Wilson, J. R. & Hallworth, M. A., 1986 Cooling and crystallization at an inclined plane. Earth Planet. Sci. Lett. 79, 319328.Google Scholar
Huppert, H. E., Sparks, R. S. J., Wilson, J. R., Hallworth, M. A. & Leitch, A. M., 1987 Laboratory experiments with aqueous solutions modelling magma chamber processes. II. Cooling and crystallization along inclined planes. In Origins of Igneous Layering, pp. 539568. NATO Advanced Studies Institute. Reidel.
Huppert, H. E. & Turner, J. S., 1980 Ice blocks melting into a salinity gradient. J. Fluid Mech. 100, 367384.Google Scholar
Huppert, H. E. & Worster, M. G., 1985 Dynamic solidification of a binary melt. Nature 314, 703707.Google Scholar
Hurle, D. T. J., Jakeman, E. & Wheeler, A. A., 1982 Effect of solutal convection on the morphological stability of a binary alloy. J. Cryst. Growth 58, 163179.Google Scholar
Ivantsov, G. P.: 1947 Temperature field around spherical, cylindrical and needle-shaped crystals growing in a supercooled melt. Dokl. Akad. Nauk SSSR 58, 567569.Google Scholar
Kerr, R. C., Woods, A. W., Worster, M. G. & Huppert, H. E., 1989 Disequilibrium and macrosegregation during solidification of a binary melt. Nature 340, 357362.Google Scholar
Kerr, R. C., Woods, A. W., Worster, M. G. & Huppert, H. E., 1990a Solidification of an alloy cooled from above. Part 1. Equilibrium growth. J. Fluid Mech. (in press).Google Scholar
Kerr, R. C., Woods, A. W., Worster, M. G. & Huppert, H. E., 1990b Solidification of an alloy cooled from above. Part 2. Non-equilibrium interfacial kinetics. J. Fluid Mech. (in press).Google Scholar
Kerr, R. C., Woods, A. W., Worster, M. G. & Huppert, H. E., 1990c Solidification of an alloy cooled from above. Part 3. Compositional stratification within the solid. J. Fluid Mech. (in press).Google Scholar
Kurz, W. & Fisher, D. J., 1986 Fundamentals of Solidification. Trans. Tech. Publications.
Lamé, G. & Clapeyron, B. P. 1831 Mémoire sur la solidification par refroidissement d'un globe solide. Ann. Chem. Phys. 47, 250256.Google Scholar
Langer, J. S.: 1980 Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 128.Google Scholar
Langer, J. S.: 1987 Lectures in the theory of pattern formation. In Chance and Matter, pp. 629712. Les Houches session XLVI Nato ASI. North-Holland.
Leitch, A. M.: 1985 Laboratory models of magma chambers. Ph.D. thesis, Australian National University.
Leitch, A. M.: 1987 Various aqueous solutions crystallizing from the side. In Structure and Dynamics of Partially Solidified Systems (ed. D. E. Loper), pp. 3757. Martinus Nijhoff.
Loper, D. E.: 1983 Structure of the inner core boundary. Geophys. Astrophys. Fluid Dyn. 25, 139155.Google Scholar
Loper, D. E.: 1987 Structure and Dynamics of Partially Solidified Systems. Martinus Nijhoff.
Loper, D. E. & Roberts, P. H., 1978 On the motion of an iron-alloy core containing a slurry. I. General theory. Geophys. Astrophys. Fluid Dyn. 9, 289321.Google Scholar
Loper, D. E. & Roberts, P. H., 1980 On the motion of an iron-alloy core containing a slurry. II. A simple model. Geophys. Astrophys. Fluid Dyn. 16, 83127.Google Scholar
Lowell, R. P.: 1985 Double-diffusive convection in partially molten silicate systems: its role during magma production and in magma chambers. J. Volcanol. Geotherm. Res. 26, 124.Google Scholar
McBirney, A. R.: 1980 Mixing and unmixing of magmas. J. Volcanol. Geotherm. Res. 7, 357371.Google Scholar
McBirney, A. R., Baker, B. H. & Nilson, R. H., 1985 Liquid fractionation. Part I: basic principles and experimental simulations. J. Volcanol. Geotherm. Res. 24, 124.Google Scholar
Moffatt, H. K.: 1989 Liquid metal MHD and the geodynamo. In Proc. IUTAM Symposium on Liquid Metal Magnetohydrodynamics, Riga, USSR, May 1988. Kluwer Academic Publications.
Mullins, W. W. & Sekerka, R. F., 1964 Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444451.Google Scholar
Nilson, R. H.: 1985 Countercurrent convection in a double-diffusive boundary layer. J. Fluid Mech. 160, 181210.Google Scholar
Nilson, R. H. & Baer, M. R., 1982 Double-diffusive counterbuoyant boundary layer in laminar natural convection. Intl J. Heat Mass Transfer 25, 285287.Google Scholar
Nilson, R. H., McBirney, A. R. & Baker, B. H., 1985 Liquid fractionation. Part II: fluid dynamics and quantitative implictions for magmatic systems. J. Volcanol. Geotherm. Res. 24, 2554.Google Scholar
Ostrach, S.: 1964 Laminar flows with body forces. In Theory of Laminar Flows (ed. F. K. Moore). Princeton University Press.
Roberts, P. H. & Loper, D. E., 1983 Towards a theory of the structure and evolution of a dendrite layer. In Stellar and Planetary Magnetism (ed. A. M. Soward), pp. 329349. Gordon and Breach.
Rubinstein, L.: 1971 The Stefan Problem. AMS Transl. vol. 27, American Mathematical Society, Providence, RI.
Rutter, J. W. & Chalmers, B., 1953 Prismatic substructure. Can. J. Phys. 31, 1539.Google Scholar
Spera, F. J., Yuen, D. A. & Kemp, D. V., 1984 Mass transfer rates along vertical walls in magma chambers and magma upwelling. Nature 310, 764767.Google Scholar
Stefan, J.: 1889 Über einige Probleme der Theorie der Wämeleitung. S.-B. Wien. Akad. Mat. Natur. 98, 473484.Google Scholar
Thompson, M. E. & Szekely, J., 1987 Double-diffusive convection during solidification at a vertical wall. In Structure and Dynamics of Partially Solidified Systems. (ed. D. E. Loper). Martinus Nijhoff.
Thompson, M. E. & Szekely, J., 1988 Mathematical and physical modelling of double-diffusive convection of aqueous solutions crystallizing at a vertical wall. J. Fluid Mech. 187, 409433.Google Scholar
Turner, J. S.: 1979 Buoyancy Effects in Fluids. Cambridge University Press.
Turner, J. S.: 1980 A fluid-dynamical model of differentiation and layering in magma chambers. Nature 255, 213215.Google Scholar
Turner, J. S. & Gustafson, L. B., 1981 Fluid motions and compositional gradients produced by crystallization or melting at vertical boundaries. J. Volcanol. Geotherm. Res. 11, 93125.Google Scholar
Turner, J. S., Huppert, H. E. & Sparks, R. S. J. 1986 Komatiites II: Experimental and theoretical investigations of post-emplacement cooling and crystallization. J. Petrol. 27, 397437 (herein THS).Google Scholar
Woods, A. W. & Huppert, H. E., 1989 The growth of compositionally stratified solid above a horizontal boundary. J. Fluid Mech. 199, 2953.Google Scholar
Worster, M. G.: 1983 Convective flow problems in geological fluid dynamics. Ph.D. thesis, University of Cambridge.
Worster, M. G.: 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167, 481501.Google Scholar
Worster, M. G., Huppert, H. E. & Sparks, R. S. J. 1990 Convection and crystallization in magma cooled from above. Earth Planet. Sci. Lett. (submitted).Google Scholar
Worster, M. G. & Leitch, A. M., 1985 Laminar free convection in confined regions. J. Fluid Mech. 156, 301319.Google Scholar