Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T23:15:42.911Z Has data issue: false hasContentIssue false

Effects of horizontal pressure gradients on bed destabilization under waves

Published online by Cambridge University Press:  05 January 2017

C. Berni
Affiliation:
University Grenoble Alpes, CNRS, LEGI, CS40700, 38058 Grenoble, France Irstea, UR HHLY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne CEDEX, France
H. Michallet*
Affiliation:
University Grenoble Alpes, CNRS, LEGI, CS40700, 38058 Grenoble, France
E. Barthélemy
Affiliation:
University Grenoble Alpes, CNRS, LEGI, CS40700, 38058 Grenoble, France
*
Email address for correspondence: [email protected]

Abstract

We report on new experiments designed to investigate bed destabilization processes in a two-dimensional wave flume physical model of a beach. The mobile bed consists of non-cohesive granular material of low density. The wave conditions are provided by repeating a cycle of waves made of two bichromatic groups of different period. The horizontal and vertical velocities are acoustically profiled vertically from free-stream elevation down to the still bed level in the surf zone. Additional measurements of the fluid pressure at positions closely aligned horizontally and vertically in and slightly above the sediment bed are undertaken. Mobile bed interfaces, still bed and top interface, are detected via acoustic and optical methods. Both methods are cross-compared and give similar results. Flow turbulence over the bed is analysed, the Reynolds turbulent shear stress is found negligible compared to the orbital flow induced momentum diffusion. The shear stress and the horizontal pressure gradient are computed at near-bed elevation and used in the bed incipient plug flow model of Sleath (Cont. Shelf Res., vol. 19 (13), 1999, pp. 1643–1664). Both the model and the measurements confirm that destabilization occurs when the non-dimensional pressure gradient (or Sleath number) exceeds the threshold value of 0.3 which is simultaneous with strong flow acceleration. The near-bottom fluid shear stress detected during these flow accelerations at steep wave fronts is found experimentally to be negative, which is retrieved with an unsteady plug flow model. This is suggesting that the fluid above the bed resists the sediment layer motion at these particular phases.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der A, D. A., O’Donoghue, T., Davies, A. G. & Ribberink, J. S. 2011 Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 684, 251283.CrossRefGoogle Scholar
Abreu, T., Michallet, H., Silva, P. A., Sancho, F., van der A, D. A. & Ruessink, B. G. 2013 Bed shear stress under skewed and asymmetric oscillatory flows. Coast. Engng 73 (7), 110.CrossRefGoogle Scholar
Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, E. 2013 Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594615.Google Scholar
Bagnold, R. A. 1956 The flow of cohesionless grains in fluids. Phil. Trans. R. Soc. Lond. A 249, 235297.Google Scholar
Bailard, J. A. 1981 An energetics total load sediment transport model for a plane sloping beach. J. Geophys. Res. 86 (C11), 1093810954.CrossRefGoogle Scholar
Berni, C., Barthélemy, E. & Michallet, H. 2013 Surf zone cross-shore boundary layer velocity asymmetry and skewness: an experimental study on a mobile bed. J. Geophys. Res. Oceans 118, 21882200.Google Scholar
Berni, C., Michallet, H. & Barthélemy, E. 2012 Measurements of surf zone sand bed dynamics under irregular waves. Eur. J. Environ. Civil Engng 16 (8), 981994.Google Scholar
Berni, C., Mignot, E., Michallet, H., Dalla-Costa, C., Grasso, F. & Lagauzère, M. 2009 Diversity of bed evolution at wave and tidal scales on truc-vert beach. J. Coast. Res. SI 56, 17261730.Google Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.Google Scholar
Bricault, M.2006 Rétrodiffusion acoustique par une suspension en milieu turbulent: application à la mesure de profils de concentration pour l’étude de processus hydrosédimentaires. PhD thesis, INP Grenoble.Google Scholar
Chen, D., Chen, C., Tang, F. E., Stansby, P. & Li, M. 2007 Boundary layer structure of oscillatory open-channel shallow flows over smooth and rough beds. Exp. Fluids 42 (5), 719736.CrossRefGoogle Scholar
Conley, D. C. & Inman, D. L. 1992 Field observations of the fluid-granular boundary layer under near-breaking waves. J. Geophys. Res. 97 (C6), 96319643.Google Scholar
Cowen, E. A., Dudley, R. D., Liao, Q., Variano, E. A. & Liu, P. L.-F. 2010 An in situ borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity. Exp. Fluids 49 (1), 7788.Google Scholar
Dick, J. E. & Sleath, J. F. A. 1991 Velocities and concentrations in oscillatory flow over beds of sediment. J. Fluid Mech. 233, 165196.Google Scholar
Elgar, S., Gallagher, E. L. & Guza, R. T. 2001 Nearshore sandbar migration. J. Geophys. Res. 106 (C6), 1162311627.CrossRefGoogle Scholar
Foster, D. L., Bowen, A. J., Holman, R. A. & Natoo, P. 2006 Field evidence of pressure gradient induced incipient motion. J. Geophys. Res. 111 (C05004).Google Scholar
Frank, D., Foster, D., Sou, I. M., Calantoni, J. & Chou, P. 2015 Lagrangian measurements of incipient motion in oscillatory flows. J. Geophys. Res. Oceans 120, 244256.Google Scholar
Grasso, F., Michallet, H. & Barthélemy, E. 2011a Experimental simulation of shoreface nourishments under storm events: A morphological, hydrodynamic, and sediment grain size analysis. Coast. Engng 58, 184193.Google Scholar
Grasso, F., Michallet, H. & Barthélemy, E. 2011b Sediment transport associated with morphological beach changes forced by irregular asymmetric, skewed waves. J. Geophys. Res. 116, C03020.Google Scholar
Grasso, F., Michallet, H., Barthélemy, E. & Certain, R. 2009 Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. J. Geophys. Res. 114, C09001.Google Scholar
Hay, A. E., Zedel, L., Cheel, R. & Dillon, J. 2012a Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent doppler profiler. Part I. The oscillatory component of the flow. J. Geophys. Res. 117, C03005.Google Scholar
Hay, A. E., Zedel, L., Cheel, R. & Dillon, J. 2012b Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness using a prototype wideband coherent doppler profiler. Part II. Turbulence and stress. J. Geophys. Res. 117, C03006.Google Scholar
Henriquez, M., Reniers, A. J. H. M., Ruessink, B. G. & Stive, M. J. F. 2014 PIV measurements of the bottom boundary layer under nonlinear surface waves. Coast. Engng 94, 3346.CrossRefGoogle Scholar
Hurther, D.2001, 3-D acoustic doppler velocimetry and turbulence in open-channel flow. PhD thesis, École Polytechnique Fédérale de Lausanne.Google Scholar
Hurther, D. & Thorne, P. D. 2011 Suspension and near-bed load sediment transport processes above a migrating, sand-rippled bed under shoaling waves. J. Geophys. Res. 116, C07001.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (02), 241258.Google Scholar
Jensen, B. J., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.Google Scholar
Lajeunesse, E., Malverti, L. & Charru, F. 2010 Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. 115, F4.Google Scholar
Lanckriet, T. & Puleo, J. A. 2015 A semianalytical model for sheet flow layer thickness with application to the swash zone. J. Geophys. Res. 120 (2), 13331352.Google Scholar
Lanckriet, T., Puleo, J. A., Masselink, G., Turner, I. L., Conley, D., Blenkinsopp, C. & Russell, P. 2013 Comprehensive field study of swash-zone processes. Part II. Sheet flow sediment concentrations during quasi-steady backwash. J. Waterways Port Coast. Ocean Engng ASCE 140 (1), 2942.CrossRefGoogle Scholar
Liu, P. L.-F., Park, Y. S. & Lara, J. L. 2007 Long-wave-induced flows in an unsaturated permeable seabed. J. Fluid Mech. 586, 323345.Google Scholar
Madsen, O. S. 1974 Stability of a sand bed under breaking waves. In Proceedings of the 14th International Conference on Coastal Engineering, pp. 776794. ASCE.Google Scholar
Madsen, O. S. & Durham, W. M. 2007 Pressure-induced subsurface sediment transport in the surf zone. In Proceedings Coastal Sediments’ 07 Conference, pp. 8295. ASCE.CrossRefGoogle Scholar
Mignot, E., Hurther, D., Chassagneux, F.-X. & Barnoud, J.-M. 2009 A field study of the ripple vortex shedding process in the shoaling zone of a macro-tidal sandy beach. J. Coast. Res. SI 56, 17761780.Google Scholar
Nielsen, P. 1992 Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.CrossRefGoogle Scholar
O’Donoghue, T. & Wright, S. 2004 Concentrations in oscillatory sheet flow for well sorted and graded sands. Coast. Engng 50 (3), 117138.Google Scholar
Prel, P., Michallet, H. & Barthélemy, E. 2011 Flume experiments on wave non-linear interactions effects on beach morphodynamics. J. Coast. Res. SI 64, 20532057.Google Scholar
Pujara, N. & Liu, P. L.-F. 2014 Direct measurements of local bed shear stress in the presence of pressure gradients. Exp. Fluids 55 (7), 113.Google Scholar
Rodríguez-Abudo, S. & Foster, D. L. 2014 Unsteady stress partitioning and momentum transfer in the wave bottom boundary layer over movable rippled beds. J. Geophys. Res. Oceans 119, 85308551.CrossRefGoogle Scholar
Rodríguez-Abudo, S., Foster, D. L. & Henriquez, M. 2013 Spatial variability of the wave bottom boundary layer over movable rippled beds. J. Geophys. Res. Oceans 118, 34903506.Google Scholar
Ruessink, B. G., Michallet, H., Abreu, T., Sancho, F., Van der A, D. A., Van der Werf, J. J. & Silva, P. A. 2011 Observations of velocities, sand concentrations, and fluxes under velocity-asymmetric oscillatory flows. J. Geophys. Res. 116, C03004.Google Scholar
Scholtès, L., Chareyre, B., Michallet, H., Catalano, E. & Marzougui, D. 2015 Modeling wave-induced pore pressure and effective stress in a granular seabed. Contin. Mech. Thermodyn. 27, 305323.Google Scholar
Shields, A. 1936 Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Preussischen Versuchsanstalt für Wasserbau und Schiffbau 26.Google Scholar
Sleath, J. F. A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369409.Google Scholar
Sleath, J. F. A. 1994 Bedload transport in oscillatory flow. In Sediment Transport Mechanisms in Coastal Environments and Rivers, Proceedings EUROMECH 310 Conference, pp. 93106. World Scientific.Google Scholar
Sleath, J. F. A. 1999 Conditions for plug formation in oscillatory flow. Cont. Shelf Res. 19 (13), 16431664.Google Scholar
Soulsby, R. 1997 Dynamics of Marine Sands: a Manual for Practical Applications. Thomas Telford.Google Scholar
Suarez, L., Barthelemy, E., Berni, C., Chauchat, J., Michallet, H. & Cienfuegos, R. 2014 Vertical distribution of skewness and asymmetry in a boundary layer on a mobile bed. Experiment and k–𝜔 model comparison. La Houille Blanche (2), 8894.Google Scholar
Sumer, B. M., Guner, H. A. A., Hansen, N. M., Fuhrman, D. R. & Fredsøe, J. 2013 Laboratory observations of flow and sediment transport induced by plunging regular waves. J. Geophys. Res. Oceans 118, 61616182.Google Scholar
Sumer, B. M., Hatipoglu, F., Fredsøe, J. & Sumer, S. K. 2006 The sequence of sediment behaviour during wave-induced liquefaction. Sedimentology 53 (3), 611629.Google Scholar
Sumer, B. M., Kozakiewicz, A., Fredsøe, J. & Deigaard, R. 1996 Velocity and concentration profiles in sheet-flow layer of movable bed. J. Hydraul. Engng 122, 549558.Google Scholar
Terrile, E., Reniers, A. J. H. M., Stive, M. J. F., Tromp, M. & Verhagen, H. J. 2006 Incipient motion of coarse particles under regular shoaling waves. Coast. Engng 53 (1), 8192.CrossRefGoogle Scholar
Wilson, K. C. 1987 Analysis of bed-load motion at high shear stress. J. Hydraul. Engng 113, 97103.CrossRefGoogle Scholar
Yamamoto, T., Koning, H. L., Sellmeijer, H. & van Hijum, E. 1978 On the response of a poro-elastic bed to water waves. J. Fluid Mech. 87 (1), 193206.Google Scholar
Yuan, J. & Madsen, O. S. 2014 Experimental study of turbulent oscillatory boundary layers in an oscillating water tunnel. Coast. Engng 89, 6384.Google Scholar
Zala Flores, N. & Sleath, J. F. A. 1998 Mobile layer in oscillatory sheet flow. J. Geophys. Res. 103 (C6), 1278312812.Google Scholar