Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T14:24:34.477Z Has data issue: false hasContentIssue false

Drop deformation by laser-pulse impact

Published online by Cambridge University Press:  06 April 2016

Hanneke Gelderblom*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Henri Lhuissier
Affiliation:
IUSTI, CNRS and Aix-Marseille Université, 13453 Marseille, CEDEX 13, France
Alexander L. Klein
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Wilco Bouwhuis
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Detlef Lohse
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Emmanuel Villermaux
Affiliation:
IRPHE, Aix-Marseille Université, 13384 Marseille, CEDEX 13, France
Jacco H. Snoeijer
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Mesoscopic Transport Phenomena, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

A free falling, absorbing liquid drop hit by a nanosecond laser pulse experiences a strong recoil pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the time scale of the pressure pulse, when the drop is still spherical. This yields the kinetic energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the time scale where surface tension is important, the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependence on the pulse shape: for a given propulsion, a tightly focused pulse results in a thin curved sheet which maximizes the lateral expansion, while a uniform illumination yields a smaller expansion but a flat symmetric sheet, in good agreement with experimental observations.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
Banine, V. Y., Koshelev, K. N. & Swinkels, G. H. P. M. 2011 Physical processes in euv sources for microlithography. J. Phys. D 44, 253001.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bergmann, R., van der Meer, D., Gekle, S., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381–409.CrossRefGoogle Scholar
Bouwhuis, W., van der Veen, R., Tran, T., Keij, D., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.CrossRefGoogle ScholarPubMed
Bremond, N. & Villermaux, E. 2005 Bursting thin liquid films. J. Fluid Mech. 524, 121130.CrossRefGoogle Scholar
Byerly, W. E. 1893 An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical and Ellipsoidal Harmonics with Applications to Problems in Mathematical Physics. Gin and Company.Google Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Cooker, M. J. & Peregrine, D. H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.CrossRefGoogle Scholar
Gekle, S., Peters, I. R., Gordillo, J., van der Meer, D. & Lohse, D. 2010 Supersonic air flow due to solid–liquid impact. Phys. Rev. Lett. 104, 24501.CrossRefGoogle ScholarPubMed
Hicks, P. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Klein, A. L., Bouwhuis, W., Visser, C. W., Lhuissier, H., Sun, C., Snoeijer, J. H., Villermaux, E., Lohse, D. & Gelderblom, H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3, 044018.CrossRefGoogle Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M., Weitz, D. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 07450.CrossRefGoogle ScholarPubMed
Mizoguchi, H., Abe, T., Watanabe, Y., Ishihara, T., Ohta, T., Hori, T., Yanagida, T., Nagano, H., Yabu, T., Nagai, S. et al. 2010 1st generation laser-produced plasma source system for hvm euv lithography. Proc. SPIE 7638, 76308.Google Scholar
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.CrossRefGoogle Scholar
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble-growth and detachment from a needle. J. Fluid Mech. 257, 111145.CrossRefGoogle Scholar
Peters, I. R., van der Meer, D. & Gordillo, J. M. 2013 Splash wave and crown breakup after disc impact on a liquid surface. J. Fluid. Mech. 724, 553580.CrossRefGoogle Scholar
Power, H. & Wrobel, L. C. 1995 Boundary Integral Methods in Fluid Mechanics. WIT Press.Google Scholar
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.Google Scholar
Riboux, G. & Gordillo, J. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.CrossRefGoogle Scholar
Richard, D. & Quéré, D. 2000 Bounding water drops. Europhys. Lett. 50 (6), 769775.CrossRefGoogle Scholar
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2004 Dynamics of a liquid lamella resulting from the impact of a water drop on a small target. Proc. R. Soc. Lond. A 460, 26812704.CrossRefGoogle Scholar
Sun, C., Can, E., Dijkink, R., Lohse, D. & Prosperetti, A. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.CrossRefGoogle Scholar
Tagawa, Y., Oudalov, N., Visser, C., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.Google Scholar
Thoroddsen, S., Takehara, K., Etoh, T. G. & Ohl, C.-D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.CrossRefGoogle Scholar
Vernay, C., Ramos, L. & Ligoure, C. 2015 Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field. J. Fluid Mech. 764, 428444.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Vogel, A., Busch, S. & Parlitz, U. 1996 Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100 (1), 148165.CrossRefGoogle Scholar
Xu, L., Barcos, L. & Nagel, S. R. 2007 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.Google ScholarPubMed
Yarin, A. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing … Annu. Rev. Fluid Mech. 38, 519592.CrossRefGoogle Scholar