Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T05:25:57.123Z Has data issue: false hasContentIssue false

Direct numerical simulations of vortex rings at ReΓ = 7500

Published online by Cambridge University Press:  22 May 2007

MICHAEL BERGDORF
Affiliation:
Computational Science & Engineering Laboratory, ETH Zurich, Switzerland
PETROS KOUMOUTSAKOS
Affiliation:
Computational Science & Engineering Laboratory, ETH Zurich, Switzerland
ANTHONY LEONARD
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, USA

Abstract

We present direct numerical simulations of the turbulent decay of vortex rings with ReΓ = 7500. We analyse the vortex dynamics during the nonlinear stage of the instability along with the structure of the vortex wake during the turbulent stage. These simulations enable the quantification of vorticity dynamics and their correlation with structures from dye visualization and the observations of circulation decay that have been reported in related experimental works. Movies are available with the online version of the paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergdorf, M., Cottet, G.-H. & Koumoutsakos, P. 2005 Multilevel adaptive particle methods for convection-diffusion equations. Multiscale Model. Simul. 4 (1), 328357.CrossRefGoogle Scholar
Bergdorf, M. & Koumoutsakos, P. 2006 A Lagrangian particle-wavelet method. Multiscale Model. Simul. 5 (3), 980995.CrossRefGoogle Scholar
Cottet, G.-H. & Koumoutsakos, P. 2000 Vortex Methods: Theory and Practice. Cambridge University Press.CrossRefGoogle Scholar
Cottet, G.-H., Koumoutsakos, P. & OuldSalihi, M.-L. Salihi, M.-L. 2000 Vortex methods with spatially varying cores. J. Comput. Phys. 162, 164185.CrossRefGoogle Scholar
Dazin, A., Dupont, P. & Stanislas, M. 2006 a Experimental characterization of the instability of the vortex ring. part i: Linear phase. Exps. Fluids 40 (3), 383399.CrossRefGoogle Scholar
Dazin, A., Dupont, P. & Stanislas, M. 2006 b Experimental characterization of the instability of the vortex rings. part ii: Non-linear phase. Exps. Fluids 41 (3), 401413.CrossRefGoogle Scholar
Glezer, A. & Coles, D. 1990 An experimental-study of a turbulent vortex ring. J. Fluid Mech. 211, 243283.CrossRefGoogle Scholar
Koumoutsakos, P. 1997 Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (2), 821857.CrossRefGoogle Scholar
Koumoutsakos, P. 2005 Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457487.CrossRefGoogle Scholar
Leonard, A. & Reynolds, W. C. 1988 Turbulence research by numerical simulation. In Perspectives in Fluid Mechanics Lecture Notes in Physics, vol. 320 (ed. Coles, D.), pp. 113142. Springer.CrossRefGoogle Scholar
Naitoh, T., Fukuda, N., Gotoh, T., Yamada, H. & Nakajima, K. 2002 Experimental study of axial flow in a vortex ring. Phys. Fluids 14 (1), 143149.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sbalzarini, I. F., Walther, J. H., Bergdorf, M., Hieber, S. E., Kotsalis, E. M. & Koumoutsakos, P. 2006 PPM – a highly efficient parallel particle-mesh library. J. Comput. Phys. 215 (2), 566588.CrossRefGoogle Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24, 235279.CrossRefGoogle Scholar
Shariff, K., Verzicco, R. & Orlandi, P. 1994 A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage. J. Fluid Mech. 279, 351375.CrossRefGoogle Scholar
Weigand, A. & Gharib, M. 1994 On the decay of a turbulent vortex ring. Phys. Fluids 6 (12), 38063808.CrossRefGoogle Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66 (01), 3547.CrossRefGoogle Scholar
Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332, 335353.Google Scholar
Williamson, J. H. 1980 Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 4856.CrossRefGoogle Scholar
Winckelmans, G. S. & Leonard, A. 1993 Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109 (2), 247273.CrossRefGoogle Scholar

Bergdorf et al. supplementary movie

Movie 1. Spanwise and streamwise-vorticity crosscuts for ring A (Re_Γ = 7500, size of the Gaussian core: R/2.42, with R being the vortex ring radius). Green and red colours denote positive and negative values, respectively. The left-hand panels display the decay of the translation velocity and circulation of the ring.

Download Bergdorf et al. supplementary movie(Video)
Video 8.9 MB

Bergdorf et al. supplementary movie

Movie 1. Spanwise and streamwise-vorticity crosscuts for ring A (Re_Γ = 7500, size of the Gaussian core: R/2.42, with R being the vortex ring radius). Green and red colours denote positive and negative values, respectively. The left-hand panels display the decay of the translation velocity and circulation of the ring.

Download Bergdorf et al. supplementary movie(Video)
Video 2.8 MB

Bergdorf et al. supplementary movie

Movie 2. Visualization of the vortex lines of ring B (Re_Γ = 7500, size of the Gaussian core: R/3.52, with R being the vortex ring radius) at t = 120.53. Hairpin vortices are apparent in the wake region of the ring.

Download Bergdorf et al. supplementary movie(Video)
Video 5.1 MB

Bergdorf et al. supplementary movie

Movie 2. Visualization of the vortex lines of ring B (Re_Γ = 7500, size of the Gaussian core: R/3.52, with R being the vortex ring radius) at t = 120.53. Hairpin vortices are apparent in the wake region of the ring.

Download Bergdorf et al. supplementary movie(Video)
Video 1.7 MB