Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T20:58:41.206Z Has data issue: false hasContentIssue false

Convection in three-dimensional vibrofluidized granular beds

Published online by Cambridge University Press:  01 August 2011

H. VISWANATHAN*
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
N. A. SHEIKH
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
R. D. WILDMAN
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
J. M. HUNTLEY
Affiliation:
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
*
Email address for correspondence: [email protected]

Abstract

We study convective motion in vertically vibrated three-dimensional granular beds by comparing the predictions of a model based on a hydrodynamic description to Navier–Stokes order with experimental results obtained using positron emission particle tracking (PEPT). The three-dimensional conservation equations relating mass, momentum and energy are solved using the finite element (FE) method for a viscous vibrofluidized bed by using only observable system parameters such as particle number, size, mass and coefficients of restitution. The mean velocity profiles from the viscous model show reasonable agreement with the experimental results at relatively low altitudes for the range of experimental values studied, though the velocity fields at higher altitudes were systematically underestimated by the model. We confirm that the convection rolls are influenced by the sidewall coefficient of restitution and demonstrate the scaling relationships that operate, where increasing amplitude of vibration leads to a reduction in the angular velocity of the rolls.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bourzutschky, M. & Miller, J. 1995 Granular convection in a vibrated fluid. Phys. Rev. Lett. 74, 22162219.CrossRefGoogle Scholar
Brey, J. J., Dufty, J. W., Kim, C. S. & Santos, A. 1998 Hydrodynamics for granular flow at low density. Phys. Rev. E 58, 46384653.CrossRefGoogle Scholar
Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635636.CrossRefGoogle Scholar
Chandrashekar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Cordero, P., Ramírez, R. & Risso, D. 2003 Buoyancy driven convection and hysteresis in granular gases: numerical solution. Physica A 327, 8287.CrossRefGoogle Scholar
Eshuis, P., van der Meer, D. & Alam, M. 2010 Onset of convection in strongly shaken granular matter. Phys. Rev. Lett. 104, 038001.CrossRefGoogle ScholarPubMed
Eshuis, P., van der Weele, K., van der Meer, D. & Lohse, D. 2005 Granular Leidenfrost effect: Experiment and theory of floating clusters. Phys. Rev. Lett. 95, 258001.CrossRefGoogle Scholar
Falcon, E., Wunenburger, R., Evesque, P., Fauve, S., Chabot, C., Garrabos, Y. & Beysens, D. 1999. Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440443.CrossRefGoogle Scholar
Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 52, 299318.Google Scholar
Feitosa, K. & Menon, N. 2002 Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88, 198301.CrossRefGoogle Scholar
Galvin, J. E., Hrenya, C. M. & Wildman, R. D. 2007 On the role of the Knudsen layer in rapid granular flows. J. Fluid Mech. 585, 7392.CrossRefGoogle Scholar
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.CrossRefGoogle ScholarPubMed
Getling, A. V. 1998 Rayleigh–Benard Convection: Structures and Dynamics, Advanced Series in Nonlinear Dynamics, vol. 11. pp. 13–14. World Scientific Publishing Co., Inc.CrossRefGoogle Scholar
Hayakawa, H., Yue, S. & Hong, D. C. 1995 Hydrodynamic description of granular convection. Phys. Rev. Lett. 75, 23282331.CrossRefGoogle ScholarPubMed
Hong, D. C. & Yue, S. 1998 Traffic equations and granular convection. Phys. Rev. E 58, 47634775.CrossRefGoogle Scholar
Hrenya, C. M., Galvin, J. E. & Wildman, R. D. 2008 Evidence of higher-order effects in thermally driven rapid granular flows. J. Fluid Mech. 598, 429450.CrossRefGoogle Scholar
Jenkins, J. T. 1999 Kinetic theory for nearly elastic spheres. In Physics of Dry Granular Media, pp. 353370. Kluwer.Google Scholar
Jenkins, J. T. & Richman, M. W. 1985 Grad's 13-moment system for a dense gas of inelasticspheres. Arch. Rat. Mech. Anal. 87, 355377.CrossRefGoogle Scholar
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.CrossRefGoogle Scholar
Khain, E. & Meerson, B. 2003 Onset of thermal convection in a horizontal layer of granular gas. Phys. Rev. E 67, 021306.CrossRefGoogle Scholar
Knight, J. B., Ehrichs, E. E., Kuperman, V., Flint, J. K., Jaeger, H. M. & Nagel, S. R. 1996 Experimental study of granular convection. Phys. Rev. E 54, 57265738.CrossRefGoogle ScholarPubMed
Kumaran, V. 1998 Temperature of a granular material “fluidized” by external vibrations. Phys. Rev. E 57, 56605664.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn., In Course of Theoretical Physics, vol. 6. Pergamon Press.Google Scholar
Leidenfrost, J. G. 1966 On fixation of water in diverse fire. Intl J. Heat Mass Transfer 9, 1153.CrossRefGoogle Scholar
Martin, T. W., Huntley, J. M. & Wildman, R. D. 2005 Hydrodynamic model for a vibrofluidized granular bed. J. Fluid Mech. 535, 11531166.CrossRefGoogle Scholar
Meerson, B., Poschel, T. & Bromberg, Y. 2003 Close-packed floating clusters: Granular hydrodynamics beyond the freezing point. Phys. Rev. Lett. 91, 024301.CrossRefGoogle ScholarPubMed
Paolotti, D., Barrat, A., Marconi, U. M. B. & Puglisi, A. 2004 Thermal convection in monodisperse and bidisperse granular gases: a simulation study. Phys. Rev. E 69, 061304.CrossRefGoogle ScholarPubMed
Ramírez, R., Risso, D. & Cordero, P. 2000 Thermal convection in fluidised granular systems. Phys. Rev. Lett. 85, 12301233.CrossRefGoogle Scholar
Richman, M. W. 1993 Boundary-conditions for granular flows at randomly fluctuating bumpy boundaries. Mech. Mater. 16, 211218.CrossRefGoogle Scholar
Savage, S. B. 1988 Streaming motions in a bed of vibrationally fluidized dry granular material. J. Fluid Mech. 194, 457478.CrossRefGoogle Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelasticspheres, to Burnett order. J. Fluid Mech. 361, 4174.CrossRefGoogle Scholar
Shinbrot, T., Khakhar, D., McCarthy, J. & Ottino, J. M. 1997 A simple model for granular convection. Phys. Rev. Lett. 79, 829832.CrossRefGoogle Scholar
Sunthar, P. & Kumaran, V. 2001 Characterization of the stationary states of a dilute vibrofluidized bed. Phys. Rev. E 64, 041303.CrossRefGoogle Scholar
Talbot, J. & Viot, P. 2002 Wall-enhanced convection in vibrofluidized granular systems. Phys. Rev. Lett. 89, 064301.CrossRefGoogle ScholarPubMed
Viswanathan, H., Wildman, R. D., Huntley, J. M. & Martin, T. W. 2006 Comparison of kinetic theory predictions with experimental results for a vibrated three-dimensional granular bed. Phys. Fluids 18, 113302.CrossRefGoogle Scholar
Warr, S. & Huntley, J. M. 1995 Energy input and scaling laws for a single particle vibrating in one-dimension. Phys. Rev. E 52, 55965601.CrossRefGoogle ScholarPubMed
Wildman, R. D., Huntley, J. M., Hansen, J. P., Parker, D. J. & Allen, D. A. 2000 Single-particle motion in three-dimensional vibrofluidized granular beds. Phys. Rev. E 62, 38263835.CrossRefGoogle ScholarPubMed
Wildman, R. D., Huntley, J. M. & Parker, D. J. 2001 a Convection in highly fluidized three-dimensional granular beds. Phys. Rev. Lett. 86, 33043307.CrossRefGoogle ScholarPubMed
Wildman, R. D., Huntley, J. M. & Parker, D. J. 2001 b Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys. Rev. E 6306, 061311.CrossRefGoogle Scholar
Wildman, R. D., Martin, T. W., Krouskop, P. E., Talbot, J., Huntley, J. M. & Parker, D. J. 2005 Convection in vibrated annular granular beds. Phys. Rev. E 71, 061301.CrossRefGoogle ScholarPubMed
Wildman, R. D. & Parker, D. J. 2002 Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88, 064301.CrossRefGoogle ScholarPubMed