Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T10:25:41.858Z Has data issue: false hasContentIssue false

Consequences of self-preservation on the axis of a turbulent round jet

Published online by Cambridge University Press:  08 May 2014

F. Thiesset
Affiliation:
School of Engineering, University of Newcastle, Callaghan Campus, NSW 2308, Australia
R. A. Antonia
Affiliation:
School of Engineering, University of Newcastle, Callaghan Campus, NSW 2308, Australia
L. Djenidi*
Affiliation:
School of Engineering, University of Newcastle, Callaghan Campus, NSW 2308, Australia
*
Email address for correspondence: [email protected]

Abstract

On the basis of a two-point similarity analysis, the well-known power-law variations for the mean kinetic energy dissipation rate $\overline{\epsilon }$ and the longitudinal velocity variance $\overline{u^2}$ on the axis of a round jet are derived. In particular, the prefactor for $\overline{\epsilon } \propto (x-x_0)^{-4}$, where $x_0$ is a virtual origin, follows immediately from the variation of the mean velocity, the constancy of the local turbulent intensity and the ratio between the axial and transverse velocity variance. Second, the limit at small separations of the two-point budget equation yields an exact relation illustrating the equilibrium between the skewness of the longitudinal velocity derivative $S$ and the destruction coefficient $G$ of enstrophy. By comparing the latter relation with that for homogeneous isotropic decaying turbulence, it is shown that the approach towards the asymptotic state at infinite Reynolds number of $S+2G/R_{\lambda }$ in the jet differs from that in purely decaying turbulence, although $S+2G/R_{\lambda } \propto R_{\lambda }^{-1}$ in each case. This suggests that, at finite Reynolds numbers, the transport equation for $\overline{\epsilon }$ imposes a fundamental constraint on the balance between $S$ and $G$ that depends on the type of large-scale forcing and may thus differ from flow to flow. This questions the conjecture that $S$ and $G$ follow a universal evolution with $R_{\lambda }$; instead, $S$ and $G$ must be tested separately in each flow. The implication for the constant $C_{\epsilon 2}$ in the $k-\overline{\epsilon }$ model is also discussed.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Anselmet, F. & Chambers, A. J. 1986 Assessment of local isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365391.CrossRefGoogle Scholar
Antonia, R. A. & Burattini, P. 2006 Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.CrossRefGoogle Scholar
Antonia, R. A. & Mi, J. 1993 Temperature dissipation in a turbulent round jet. J. Fluid Mech. 250 (1), 531551.Google Scholar
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1980 Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23 (4), 695700.CrossRefGoogle Scholar
Antonia, R. A., Zhou, T., Danaila, L. & Anselmet, F. 2000 Streamwise inhomogeneity of decaying grid turbulence. Phys. Fluids 12, 30863089.Google Scholar
Baldyga, J., Bourne, J. R. & Zimmermann, B. 1994 Investigation of mixing in jet reactors using fast, competitive, consecutive reactions. Chem. Engng Sci. 49 (12), 19371946.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. 190 (1023), 534550.Google Scholar
Burattini, P., Antonia, R. A. & Danaila, L. 2005a Scale-by-scale energy budget on the axis of a turbulent round jet. J. Turbul. 6, 111.Google Scholar
Burattini, P., Antonia, R. A. & Danaila, L. 2005b Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101.CrossRefGoogle Scholar
Danaila, L., Krawczynski, J. F., Thiesset, F. & Renou, B. 2012 Yaglom-like equation in axisymmetric anisotropic context. Physica D 241, 216223.CrossRefGoogle Scholar
Darisse, A., Lemay, J. & Benaïssa, A. 2014 Extensive study of temperature dissipation measurements on the centerline of a turbulent round jet based on the $\theta ^2/2$ budget. Exp. Fluids 55 (1), 115.Google Scholar
Ewing, D., Frohnapfel, B., George, W. K., Pedersen, J. M. & Westerweel, J. 2007 Two-point similarity in the round jet. J. Fluid Mech. 577 (1), 309330.Google Scholar
Friehe, C. A., Van Atta, C. W. & Gibson, C. H.1972 Jet turbulence dissipation rate measurements and correlations. In Turbulent Shear Flows, AGARD Conference Proceedings, vol. 93, p. 18.Google Scholar
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 14921509.Google Scholar
Kolmogorov, A. 1941 Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 125, 1517.Google Scholar
Lee, S. K., Djenidi, L., Antonia, R. A. & Danaila, L. 2013 On the destruction coefficients for slightly heated decaying grid turbulence. Intl J. Heat Fluid Flow 43 (0), 129136.CrossRefGoogle Scholar
Lindborg, E. 1999 Correction to the four-fifths law due to variations of the dissipation. Phys. Fluids 11, 510512.CrossRefGoogle Scholar
Lipari, G. & Stansby, P. K. 2011 Review of experimental data on incompressible turbulent round jets. Flow Turbul. Combust. 87 (1), 79114.Google Scholar
Lundgren, T. S. 2002 Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids 14, 638.Google Scholar
Mi, J., Xu, M. & Zhou, T. 2013 Reynolds number influence on statistical behaviors of turbulence in a circular free jet. Phys. Fluids 25 (7), 075101.CrossRefGoogle Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.CrossRefGoogle Scholar
Pope, S. B. 1978 An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 16 (3), 279281.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.Google Scholar
Taub, G. N., Lee, H., Balachandar, S. & Sherif, S. A. 2013 A direct numerical simulation study of higher order statistics in a turbulent round jet. Phys. Fluids 25 (11), 115102.Google Scholar
Van Atta, C. W. & Antonia, R. A. 1980 Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23 (2), 252257.CrossRefGoogle Scholar