Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T19:43:30.493Z Has data issue: false hasContentIssue false

Compositional inhomogeneities as a source of indirect combustion noise

Published online by Cambridge University Press:  23 June 2016

Luca Magri
Affiliation:
Center for Turbulence Research, Stanford University, 488 Escondido Mall, Stanford, CA 94305, USA
Jeff O’Brien
Affiliation:
Center for Turbulence Research, Stanford University, 488 Escondido Mall, Stanford, CA 94305, USA
Matthias Ihme*
Affiliation:
Center for Turbulence Research, Stanford University, 488 Escondido Mall, Stanford, CA 94305, USA
*
Email address for correspondence: [email protected]

Abstract

The generation of indirect combustion noise by compositional inhomogeneities is examined theoretically. For this, the compact-nozzle theory of Marble & Candel (J. Sound Vib., vol. 55 (2), 1977, pp. 225–243) is extended to a multi-component gas mixture, and the chemical potential function is introduced as an additional acoustic source mechanism. Transfer functions for subcritical and supercritical nozzle flows are derived, and the contribution of compositional noise is compared to entropy noise and direct noise by considering an idealized nozzle downstream of the combustor exit. It is shown that compositional noise is dependent on the local mixture composition and can exceed entropy noise for fuel-lean conditions and supercritical nozzle flows. This suggests that the compositional indirect noise requires potential consideration with the implementation of low-emission combustors.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bake, F., Richter, C., Mühlbauer, C., Kings, N., Röhle, I., Thiele, F. & Noll, B. 2009 The entropy wave generator (EWG): a reference case on entropy noise. J. Sound Vib. 326, 574598.Google Scholar
Candel, S. M.1972 Analytical studies of some acoustic problems of jet engines, PhD thesis, California Institute of Technology.Google Scholar
Candel, S., Durox, D., Ducruix, S., Birbaud, A.-L., Noiray, N. & Schuller, T. 2009 Flame dynamics and combustion noise: progress and challenges. Intl J. Aeroacoust. 8 (1–2), 156.Google Scholar
Chang, C. T., Lee, C.-M., Herbon, J. T. & Kramer, S. K. 2013 NASA environmentally responsible aviation project develops next-generation low-emissions combustor technologies (Phase I). J. Aeronaut. Aerosp. Engng 2 (4), 1000116.Google Scholar
Chu, B. T. & Kovásznay, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.Google Scholar
Cumpsty, N. A. 1979 Jet engine combustion noise: pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition. J. Sound Vib. 66 (4), 527544.Google Scholar
Dimotakis, P. E. & Miller, P. L. 1990 Some consequences of the boundedness of scalar fluctuations. Phys. Fluids 2 (11), 19191920.Google Scholar
Dowling, A. P. & Mahmoudi, Y. 2015 Combustion noise. Proc. Combust. Inst. 35, 65100.Google Scholar
Duran, I. & Moreau, S. 2013 Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723, 190231.Google Scholar
Giauque, A., Huet, M. & Clero, F. 2012 Analytical analysis of indirect combustion noise in subcritical nozzles. Trans. ASME: J. Engng Gas Turbines Power 134 (111202), 18.Google Scholar
Goh, C. S. & Morgans, A. S. 2011 Phase prediction of the response of choked nozzles to entropy and acoustic disturbances. J. Sound Vib. 330, 51845198.Google Scholar
Goodwin, D. G., Moffatt, H. K. & Speth, R. L.2016 Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.2.1. http://www.cantera.org.Google Scholar
Hultgren, L. S.2011 Core noise: implications of emerging $N+3$ designs and acoustic technology needs. Acoustics Technical Working Group, Cleveland, OH, USA.Google Scholar
Hurle, I. R., Price, R. B., Sugden, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303, 409427.Google Scholar
Ihme, M. 2017 Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49 (in press); doi:10.1146/annurev-fluid-122414-034542.Google Scholar
Ihme, M., Pitsch, H. & Bodony, D. 2009 Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32, 15451553.Google Scholar
Job, G. & Herrmann, F. 2006 Chemical potential – a quantity in search of recognition. Eur. J. Phys. 27 (2), 353371.Google Scholar
Keck, J. C. & Gillespie, D. 1971 Rate-controlled partial-equilibrium method for treating reacting gas mixtures. Combust. Flame 17, 237241.Google Scholar
Kings, N. & Bake, F. 2010 Indirect combustion noise: noise generation by accelerated vorticity in a nozzle flow. Intl J. Spray Combust. Dyn. 2 (3), 253266.Google Scholar
Marble, F. E. & Candel, S. M. 1977 Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55 (2), 225243.Google Scholar
Moase, W. H., Brear, M. J. & Manzie, C. 2007 The forced response of choked nozzles and supersonic diffusers. J. Fluid Mech. 585, 281304.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.Google Scholar
Rajaram, R. & Lieuwen, T. 2003 Parametric studies of acoustic radiation from premixed flames. Combust. Sci. Technol. 175 (12), 22692298.Google Scholar
Singh, K. K., Zhang, C., Gore, J. P., Mongeau, L. & Frankel, S. H. 2005 An experimental study of partially premixed flame sound. Proc. Combust. Inst. 30, 17071715.Google Scholar
Stow, S. R., Dowling, A. P. & Hynes, T. P. 2002 Reflection of circumferential modes in a choked nozzle. J. Fluid Mech. 467, 215239.Google Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.Google Scholar
Vie, A., Franzelli, B., Gao, Y., Lu, T., Wang, H. & Ihme, M. 2015 Analysis of segregation and bifurcation in turbulent spray flames: a 3D counterflow configuration. Proc. Combust. Inst. 35 (2), 16751683.Google Scholar
Williams, F. A. 1985 Combustion Theory. Perseus Books.Google Scholar
Zhao, W. & Frankel, S. H. 2001 Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13 (9), 26712681.Google Scholar