Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:52:53.289Z Has data issue: false hasContentIssue false

Breakup of surfactant-laden jets above the critical micelle concentration

Published online by Cambridge University Press:  15 June 2009

R. V. CRASTER
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
O. K. MATAR*
Affiliation:
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
D. T. PAPAGEORGIOU
Affiliation:
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

The breakup of viscous liquid jets that contain surfactant, that is potentially above the critical micelle concentration (CMC) is considered here within the long-wave approximation. The soluble surfactant is assumed to be present in three phases: as an interfacial species, bulk monomers and micelles. A model is developed for the interaction between these phases and the surface tension which obeys a nonlinear equation of state. The effects of the equation of state and the reservoir of surfactant created by micelles on breakup are investigated. The long-wave approximation naturally leads to a system of coupled one-dimensional equations that are solved numerically. It is demonstrated that jet breakup and satellite formation are critically affected by the presence of high surfactant concentrations above the CMC. This manifests itself by the formation of unusually large satellites. We present extensive numerical evidence that the mechanism for this phenomenon centres on the interplay between Marangoni stresses and the nonlinear surfactant equation of state; the latter exhibits a plateau at high interfacial concentrations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambravaneswaran, B. & Basaran, O. A. 1999 Effects of surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Phys. Fluids 11, 9971015.CrossRefGoogle Scholar
Ambravaneswaran, B., Wilkes, E. D. & Basaran, O. A. 2002 Drop formation from a capillary tube: comparison of one-dimensional (1-d) and two-dimensional (2-d) analyses and occurrence of satellite drops. Phys. Fluids 14, 26062621.CrossRefGoogle Scholar
Anna, S. L., Bontoux, N. & Stone, H. A. 2003 Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364366.CrossRefGoogle Scholar
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid Interface Sci. 298, 369394.CrossRefGoogle ScholarPubMed
Brenner, M. P., Shi, X. D. & Nagel, S. R. 1994 Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 33913394.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chauhan, A., Maldarelli, C., Rumschitzki, D. & Papageorgiou, D. 2003 An experimental investigation of the convective instability in a jet. Chem. Engng Sci. 58, 24212432.CrossRefGoogle Scholar
Chen, A. U., Notz, P. K. & Basaran, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88, 174501.CrossRefGoogle ScholarPubMed
Craster, R. V. & Matar, O. K. 2007 On autophobing in surfactant-driven thin films. Langmuir 23, 25882601.CrossRefGoogle ScholarPubMed
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14, 1364.CrossRefGoogle Scholar
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2005 On compound threads with large viscosity contrasts. J. Fluid Mech. 533, 95124.CrossRefGoogle Scholar
Denn, M. M. 1980 Drawing of liquids to form fibers. Annu. Rev. Fluid Mech. 12, 365387.CrossRefGoogle Scholar
Edmonstone, B. D., Craster, R. V. & Matar, O. K. 2006 Surfactant-induced fingering phenomena beyond the critical micelle concentration. J. Fluid Mech. 564, 105138.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 34583460.CrossRefGoogle ScholarPubMed
Eggers, J. 1995 Theory of drop formation. Phys. Fluids 7, 941953.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and rupture of breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.CrossRefGoogle Scholar
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Eggleton, D., Pawar, Y. P. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: A generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.CrossRefGoogle Scholar
Eggleton, C. D. & Stebe, K. J. 1998 An adsorption desorption-controlled surfactant on a deforming droplet. J. Colloid Interface Sci. 208, 6880.CrossRefGoogle Scholar
Gaver, D. P. III & Grotberg, J. B. 1992 Droplet spreading on a thin viscous film. J. Fluid Mech. 235, 399414.CrossRefGoogle Scholar
Hameed, M., Siegel, M., Young, Y. N., Li, J., Booty, M. R. & Papageorgiou, D. T. 2008 Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid. J. Fluid Mech. 594, 307340.CrossRefGoogle Scholar
Hansen, S., Peters, G. W. M. & Meijer, H. E. H. 1999 The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J. Fluid Mech. 382, 331349.CrossRefGoogle Scholar
Hunter, R. J. 1991. Foundations of Colloid Science. Oxford Science.Google Scholar
Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin film. Phys. Fluids A 5, 5868.CrossRefGoogle Scholar
Jin, F., Gupta, N. R. & Stebe, K. J. 2006 The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant. Phys. Fluids 18, 022103.CrossRefGoogle Scholar
Keast, P. & Muir, P. H. 1991 Algorithm 688 EPDCOL – a more efficient PDECOL code. ACM Trans. Math. Software 17, 153166.CrossRefGoogle Scholar
Keller, J. B., Rubinow, S. L. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16, 2052.CrossRefGoogle Scholar
Kwak, S. & Pozrikidis, C. 2001 Effect of surfactants on the instability of a liquid thread or annular layer. Part I. Quiescent fluids. Intl J. Multiphase Flow 27, 137.CrossRefGoogle Scholar
Lee, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364369.CrossRefGoogle Scholar
Leib, S. J. & Goldstein, M. E. 1986 a Convective and absolute instability of a viscous jet. Phys. Fluids 29, 952.CrossRefGoogle Scholar
Leib, S. J. & Goldstein, M. E. 1986 b The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479.CrossRefGoogle Scholar
Liao, Y.-C., Franses, E. I. & Basaran, O. A. 2006 Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids 18, 022101.CrossRefGoogle Scholar
Liao, Y.-C., Subramani, H. J., Franses, E. I. & Basaran, O. A. 2004 Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges. Langmuir 20, 99269930.CrossRefGoogle ScholarPubMed
Lin, S. P. & Reitz, R. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.CrossRefGoogle Scholar
Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. 2004 Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503.CrossRefGoogle ScholarPubMed
McGough, P. T. & Basaran, O. A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96, 054502.CrossRefGoogle ScholarPubMed
McKinley, G. H. & Tripathi, A. 2000 How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653670.CrossRefGoogle Scholar
Notz, P. K., Chen, A. U. & Basaran, O. A. 2001 Satellite drops: unexpected dynamics and change of scaling during pinch-off. Phys. Fluids 13, 549552.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 a Analytical description of the breakup of liquid jets. J. Fluid Mech. 301, 109132.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 b On the breakup of viscous liquid threads. Phys. Fluids 7, 15291544.CrossRefGoogle Scholar
Rayleigh, L. 1878 On the stability of liquid jets. Proc. London Math. Soc. 10, 413.CrossRefGoogle Scholar
Rothert, A., Richter, R. & Rehberg, I. 2003 Formation of a drop: viscosity dependence of three flow regimes. New J. Phys. 5, 59.CrossRefGoogle Scholar
Schulkes, R. M. S. M. 1993 Dynamics of liquid jets revisited. J. Fluid Mech. 250, 635650.CrossRefGoogle Scholar
Shi, X. D., Brenner, M. P. & Nagel, S. R. 1994 A cascade of structure in a drop falling from a faucet. Science 265, 219222.CrossRefGoogle Scholar
Song, Q., Couzis, A., Somasundaran, P. & Maldarelli, C. 2006 A transport model for the adsorption of surfactant from micelle solutions onto a clean air/water interface in the limit of rapid aggregate disassembly relative to diffusion and supporting dynamic tension experiments. Colloids Surf. A 282283, 162182.Google Scholar
Stebe, K. J. & Maldarelli, C. 1994 Remobilizing surfactant retarded fluid particle interfaces. 2. Controlling the surface mobility at interfaces of solutions containing surface-active components. J. Colloid Intl Science 163, 177189.CrossRefGoogle Scholar
Timmermans, M.-L. E. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.CrossRefGoogle Scholar
Tomotika, M. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous liquid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Wang, J., Mohebi, M. M. & Evans, J. R. G. 2005 Two methods to generate multiple compositions in combinatorial ink-jet printing of ceramics. Macromol. Rapid Commun. 26, 304309.CrossRefGoogle Scholar
Wang, Y., Papageorgiou, D. T. & Maldarelli, C. 1999 Increased mobility of a surfactant-retarded bubble at high bulk concentrations. J. Fluid Mech. 390, 251270.CrossRefGoogle Scholar
Wang, Y., Papageorgiou, D. T. & Maldarelli, C. 2002 Using surfactants to control the size of wakes behind moving bubbles at order one Reynolds numbers. J. Fluid Mech. 453, 119.CrossRefGoogle Scholar
Wilkes, E. D., Phillips, S. D. & Basaran, O. A. 1999 Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11, 35773598.CrossRefGoogle Scholar
Zhang, X. & Basaran, O. A. 1995 An experimental study of dynamics of drop formation. Phys. Fluids, 1184–1203.Google Scholar
Zhang, X., Harris, M. T. & Basaran, O. A. 1994 Measurement of dynamic surface tension by a growing drop technique. J. Colloid Interface Sci. 168, 4760.CrossRefGoogle Scholar