Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T18:51:55.490Z Has data issue: false hasContentIssue false

An experimental study of liquefaction shock waves

Published online by Cambridge University Press:  19 April 2006

Georg Dettleff
Affiliation:
Max-Planck-Institut für Strömungsforschung, D 3400 Göttingen
Philip A. Thompson
Affiliation:
Max-Planck-Institut für Strömungsforschung, D 3400 Göttingen Present address: Department of Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, N.Y. 12181.
Gerd E. A. Meier
Affiliation:
Max-Planck-Institut für Strömungsforschung, D 3400 Göttingen
Hans-Dieter Speckmann
Affiliation:
Max-Planck-Institut für Strömungsforschung, D 3400 Göttingen

Abstract

The existence of a liquefaction shock wave, a compression shock which converts vapour into liquid, has recently been predicted on physical grounds. The liquefaction shock was experimentally produced as the reflected shock at the closed end of a shock tube. Measurements of pressure, temperature, index of refraction and shock velocity confirm the existence of the shock and its general conformity to classical Rankine-Hugoniot conditions, with a discrepancy ∼ 10°C between measured and predicted liquid temperatures. Photographic observations confirmed the existence of a clear liquid phase and revealed the (unanticipated) presence of small two-phase torus-form rings. These rings are interpreted as vortices and are formed in or near the shockfront (∼ 50 rings/mm2 are visible near the shockfront at any given time). Separate experiments with the incident shock under conditions of partial liquefaction produced a fog behind the shock: measurements of laser-beam attenuation yielded the thickness of the condensation zone and estimates of the droplet size (∼ 10−7 m).

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethe, H. A. 1942 The theory of shock waves for an arbitrary equation of state. Office Sci. Res. and Dev., Washington, Rep. no. 545, p. 57.Google Scholar
Blythe, P. A. & Shih, C. J. 1976 Condensation shocks in nozzle flows. J. Fluid Mech. 76, 593621.Google Scholar
Born, M. 1972 Optik. Springer.
Davies, L. & Wilson, J. L. 1968 The influence of shock and boundary layer interaction on shock tube flows. In Proc. 6th Int. Shock Tube Symp., Ernst-Mach-Inst., Freiburg i. B.
Dettleff, G. 1978 Experimente zum Nachweis der VerflüssigungsstosZwelle in retrograden Gasen. dissertation, Georg-August-Universität Göttingen.
Dettleff, G., Thompson, P. A. & Meier, G. E. A. 1976 Initial experimental results for liquefaction shock waves in organic fluids. Arch. Mech. 28, 827836.Google Scholar
Elder, F. K. & De haas, N. 1952 Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J. Appl. Phys. 23, 10651069.Google Scholar
Glass, I. I. & Liu, W. S. 1978 Effects of hydrogen impurities on shock structure and stability in ionizing monatomic gases: Part 1, argon. J. Fluid Mech. 84, 5577.Google Scholar
Hobbs, D. E. 1976 Unpublished.
Homer, J. B. 1971 Studies on the nucleation and growth of metallic particles from supersaturated vapours. In Shock Tube Research (eds. J. L. Stollery, A. G. Gaydon and P. R. Owen), Proc. 8th Int. Shock Tube Symp. London: Chapman and Hall.
Honda, M., Takayama, K., Onodera, O. & Kohama, Y. 1975 Motion of reflected shock waves in shock tube. In Modern Developments in Shock Tube Research (ed. G. Kamimoto), Japan Shock Tube Res. Soc.
Kerker, M. 1969 The Scattering of Light. Academic Press.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, p. 496. Pergamon.
Liess, C. & Didden, N. 1975 Experimentelle Untersuchungen von Ringwirbeln. In Festschrift zum 50-jährigen Bestehen des Max-Planck-Instituts für Strömungsforschung (eds. G. Grabitz and H. U. Vogel). Göttingen.
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81, 465495.Google Scholar
Meier, P. & Sandeman, R. J. 1975 Interferometric studies of shockwaves into argon up to 17 km/sec in the free piston double diaphragm shock tube. In Modern Developments in Shock Tube Research (ed. G. Kamimoto). Japan Shock Tube Res. Soc.
Mirels, H. 1971 Boundary layer growth effects in shock tubes. In Shock Tube Research (ed. J. L. Stollery, A. G. Gaydon, P. R. Owen). London: Chapman and Hall.
Olson, J. D. 1975 The refractive index and Lorenz-Lorentz function of fluid methane. J. Chem. Phys. 63, 474484.Google Scholar
Oshima, Y. & Osaka, S. 1975 Interaction of two vortex rings moving side by side. Nat. Sci. Rep. Ocharzonizu Univ. 26, 3137.Google Scholar
Saltanov, G. A., Tsiklauri, G. V. & Shanin, V. K. 1970 Shock waves in a flow of wet vapor with a high liquid phase content. High Temperature 8, 533539.Google Scholar
Speckmann, H.-D. 1978 Spontane Kondensation retrograder Gase durch VerdichtungsstösZe. Diplomarbeit, Georg-August-Universität, Göttingen.
Sturtevant, B. 1970 Lecture to the Division of Fluid Dynamics Meeting, American Physical Society. See also Amer. Phys. Soc. Bull. 15, 1546.Google Scholar
Thompson, P. A. & Becker, F. 1979 A one-parameter thermal-caloric corresponding-states model. Chem. Eng. Science 34, 9399.Google Scholar
Thompson, P. A. & Sullivan, D. A. 1975 On the possibility of complete condensation shock waves in retrograde fluids. J. Fluid Mech. 70, 639649.Google Scholar
Wegener, P. P. 1969 Gas dynamics of expansion flows with condensation, and homogeneous nucleation of water vapor. In Nonequilibrium Flows, vol. I (ed. P. P. Wegener). New York: Marcel Dekker.
Wegener, P. P. & Wu, B. J. C. 1976 Homogeneous and binary nucleation: new experimental results and comparison with theory. Faraday Disc. Chem. Soc. no. 61, 77–82.
White, D. R. 1961 Turbulent structure of gaseous detonation. Phys. Fluids 4, 465480.Google Scholar
Wilson, C. T. R. 1897a Condensation of water vapour in the presence of dust-free air and other gases. Trans. Roy. Soc. A 189, 265307.Google Scholar
Wilson, C. T. R. 1897b Kondensation des Wasserdampfes in Gegenwart von staubfreier Luft und anderen Gasen. Beiblätter zu den Wiedemann Annalen der Physik und Chemie 21, 720722.Google Scholar
Yamada, T. 1973 An improved generalized equation of state. A.I.Ch.E.J. 19, 286291.Google Scholar