Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T18:58:47.818Z Has data issue: false hasContentIssue false

Vortex axis tracking by iterative propagation (VATIP): a method for analysing three-dimensional turbulent structures

Published online by Cambridge University Press:  04 March 2019

Lu Zhu
Affiliation:
Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
Li Xi*
Affiliation:
Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada Kavli Institute for Theoretical Physics (KITP), University of California, Santa Barbara, CA 93106-4030, USA
*
Email address for correspondence: [email protected]

Abstract

Vortex is a central concept in the understanding of turbulent dynamics. Objective algorithms for the detection and extraction of vortex structures can facilitate the physical understanding of turbulence regeneration dynamics by enabling automated and quantitative analyses of these structures. Despite the wide availability of vortex identification criteria, they only label spatial regions belonging to vortices, without any information on the identity, topology and shape of individual vortices. This latter information is stored in the axis lines lining the contours of vortex tubes. In this study, a new tracking algorithm is proposed which propagates along the vortex axis lines and iteratively searches for new directions for growth. The method is validated in flow fields from transient simulations where vortices of different shapes are controllably generated. It is then applied to statistical turbulence for the analysis of vortex configurations and distributions. It is shown to reliably extract axis lines for complex three-dimensional vortices generated from the walls. A new procedure is also proposed that classifies vortices into commonly observed shapes, including quasi-streamwise vortices, hairpins, hooks and branches, based on their axis-line topology. Clustering analysis is performed on the extracted axis lines to reveal vortex organization patterns and their potential connection to large-scale motions in turbulence.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Kawamura, H. & Matsuo, Y. 2001 Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluid Mech. 123 (2), 382393.Google Scholar
Adrian, R. J. 1994 Stochastic estimation of conditional structure: a review. Appl. Sci. Res. 53 (3–4), 291303.10.1007/BF00849106Google Scholar
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence a. Phys. Fluids 19 (4), 041301.10.1063/1.2717527Google Scholar
Adrian, R. J., Jones, B. G., Chung, M. K., Hassan, Y., Nithianandan, C. K. & Tung, A. C. 1989 Approximation of turbulent conditional averages by stochastic estimation. Phys. Fluids A 1 (6), 992998.Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
Bernard, P. S., Thomas, J. M. & Handler, R. A. 1993 Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385419.Google Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.Google Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76 (1), 89112.10.1017/S0022112076003145Google Scholar
Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229261.Google Scholar
Brandt, L. & de Lange, H. C. 2008 Streak interactions and breakdown in boundary layer flows. Phys. Fluids 20, 024107.Google Scholar
Brooke, J. W. & Hanratty, T. J. 1993 Origin of turbulence-producing eddies in a channel flow. Phys. Fluids A 5 (4), 10111022.Google Scholar
Cantwell, B. J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13 (1), 457515.Google Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.10.1017/S0022112005004726Google Scholar
Chen, Q., Zhong, Q., Qi, M. & Wang, X. 2015 Comparison of vortex identification criteria for planar velocity fields in wall turbulence. Phys. Fluids 27 (8), 085101.Google Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.10.1063/1.857730Google Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.Google Scholar
Corrsin, S.1943 Investigation of flow in an axially symmetric heated jet of air, NASA Adv. Conf Rep. 3123.Google Scholar
Del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.10.1017/S0022112006000814Google Scholar
Dennis, D. J. C. & Nickels, T. B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.10.1017/S0022112010006324Google Scholar
Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, 122.10.1088/1468-5248/1/1/011Google Scholar
Einstein, H. A. & Li, H. 1956 The viscous sublayer along a smooth boundary. J. Engng Mech. Div. 82 (2), 17.Google Scholar
Ester, M., Kriegel, H. P., Sander, J. & Xu, X. 1996 A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, vol. 96, pp. 226231. AAAI Press.Google Scholar
Gibson, J. F.2012 Channelflow: a spectral Navier–Stokes simulator in c++. New Hampshire.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanotić, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.Google Scholar
Hack, M. J. P. & Moin, P. 2018 Coherent instability in wall-bounded shear. J. Fluid Mech. 844, 917955.10.1017/jfm.2018.202Google Scholar
Haller, G. 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149 (4), 248277.Google Scholar
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.Google Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.10.1017/S0022112095000978Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.10.1017/S0022112081001791Google Scholar
Hinze, J. O. 1975 Turbulence, 2nd edn. pp. 223225. McGraw-Gill.Google Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18 (1), 011702.10.1063/1.2162185Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Program, Studying Turbulence Using Numerical Simulation Databases, 2, pp. 193208. Ames Research Center Stanford University.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462Google Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.Google Scholar
Jiménez, J. 1998 The largest scales of turbulent wall flows. In CTR Annual Research Briefs, vol. 137, p. 54. Stanford University.Google Scholar
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10), 101302.Google Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033Google Scholar
Jiménez, J. & Moser, R. D. 2007 What are we learning from simulating wall turbulence? Phil. Trans. R. Soc. Lond. A 365 (1852), 715732.Google Scholar
Kida, S. & Miura, H. 1998 Identification and analysis of vortical structures. Eur. J Mech. (B/Fluids) 17 (4), 471488.Google Scholar
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1), 133160.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds-number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892Google Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.Google Scholar
Lee, J., Lee, J. H., Choi, J. & Sung, H. J. 2014 Spatial organization of large-and very-large-scale motions in a turbulent channel flow. J. Fluid Mech. 749, 818840.Google Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.Google Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.Google Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.10.1017/S0022112004009802Google Scholar
Morris, S. C., Stolpa, S. R., Slaboch, P. E. & Klewicki, J. C. 2007 Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J. Fluid Mech. 580, 319338.Google Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.Google Scholar
Mullin, T. 2011 Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43, 124.Google Scholar
Offen, G. R. & Kline, S. J. 1975 A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70 (2), 209228.10.1017/S002211207500198XGoogle Scholar
Panton, R. L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.Google Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.Google Scholar
Perry, A. E. & Marušić, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.Google Scholar
Peyret, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.Google Scholar
Robinson, S. K., Kline, S. J. & Spalart, P. R.1989 A review of quasi-coherent structures in a numerically simulated turbulent boundary layer. Tech. Rep. NASA Ames Research Center. NASA-TM-102191.Google Scholar
Schlatter, P., Brandt, L., de lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.Google Scholar
Schlatter, P., Li, Q., Örlü, R., Hussain, F. & Henningson, D. S. 2014 On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. (B/Fluids) 48, 7593.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Shekar, A. & Graham, M. D. 2018 Exact coherent states with hairpin-like vortex structure in channel flow. J. Fluid Mech. 849, 7689.Google Scholar
Smith, C. R.1984 A synthesized model of the near-wall behavior in turbulent boundary layers. Tech. Rep. Lehigh University, Department of Mechanical Engineering and Mechanics. AFOSR-TR-33-1336.Google Scholar
Smith, C. R. & Schwartz, S. P. 1983 Observation of streamwise rotation in the near-wall region of a turbulent boundary layer. Phys. Fluids 26 (3), 641652.Google Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proceedings of the Midwestern Conference on Fluid Mechanics, pp. 119. Ohio State University.Google Scholar
Townsend, A. A. R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tuckerman, L. S., Kreilos, T., Schrobsdorff, H., Schneider, T. M. & Gibson, J. F. 2014 Turbulent-laminar patterns in plane Poiseuille flow. Phys. Fluids 26, 114103.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.Google Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54 (1), 3948.Google Scholar
Willmarth, W. W. & Lu, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55 (1), 6592.Google Scholar
Willmarth, W. W. & Tu, B. J. 1967 Structure of turbulence in the boundary layer near the wall. Phys. Fluids 10 (9), S134S137.Google Scholar
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.Google Scholar
Wu, X., Moin, P., Adrian, R. J. & Baltzer, J. R. 2015 Osborne Reynolds pipe flow: direct simulation from laminar through gradual transition to fully developed turbulence. Proc. Natl Acad. Sci. USA 112, 79207924.Google Scholar
Xi, L. & Bai, X. 2016 Marginal turbulent state of viscoelastic fluids: a polymer drag reduction perspective. Phys. Rev. E 93, 043118.Google Scholar
Xi, L. & Graham, M. D. 2010 Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.Google Scholar
Xi, L. & Graham, M. D. 2012 Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. J. Fluid Mech. 693, 433472.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar
Zhu, L., Schrobsdorff, H., Schneider, T. M. & Xi, L. 2018 Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids. J. Non-Newtonian Fluid Mech. 262, 115130.10.1016/j.jnnfm.2018.03.017Google Scholar
Zhu, L. & Xi, L. 2018 Coherent structure dynamics and identification during the multistage transitions of polymeric turbulent channel flow. J. Phys.: Conf. Ser. 1001 (1), 012005.Google Scholar