Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T21:25:40.176Z Has data issue: false hasContentIssue false

Tunable diffusion in wave-driven two-dimensional turbulence

Published online by Cambridge University Press:  27 February 2019

H. Xia*
Affiliation:
Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
N. Francois*
Affiliation:
Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
H. Punzmann
Affiliation:
Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
M. Shats
Affiliation:
Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We report an abrupt change in the diffusive transport of inertial objects in wave-driven turbulence as a function of the object size. In these non-equilibrium two-dimensional flows, the turbulent diffusion coefficient $D$ of finite-size objects undergoes a sharp change for values of the object size $r_{p}$ close to the flow forcing scale $L_{f}$. For objects larger than the forcing scale ($r_{p}>L_{f}$), the diffusion coefficient is proportional to the flow energy $U^{2}$ and inversely proportional to the size $r_{p}$. This behaviour, $D\sim U^{2}/r_{p}$ , observed in a chaotic macroscopic system is reminiscent of a fluctuation–dissipation relation. In contrast, the diffusion coefficient of smaller objects ($r_{p}<L_{f}$) follows $D\sim U/r_{p}^{0.35}$. This result does not allow simple analogies to be drawn but instead it reflects strong coupling of the small objects with the fabric and memory of the out-of-equilibrium flow. In these turbulent flows, the flow structure is dominated by transient but long-living bundles of fluid particle trajectories executing random walk. The characteristic widths of the bundles are close to $L_{f}$. We propose a simple phenomenology in which large objects interact with many bundles. This interaction with many degrees of freedom is the source of the fluctuation–dissipation-like relation. In contrast, smaller objects are advected within coherent bundles, resulting in diffusion properties closely related to those of fluid tracers.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boffetta, G. & Sokolov, I. M. 2002 Statistics of two-particle dispersion in two-dimensional turbulence. Phys. Fluids 14, 3224.10.1063/1.1498121Google Scholar
Bourgoin, M., Ouellette, N. T., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311, 835838.10.1126/science.1121726Google Scholar
Breivik, O., Allen, A. A., Maisondieu, C. & Olagnon, M. 2013 Advances in search and rescue at sea. Ocean Dyn. 63, 8388.10.1007/s10236-012-0581-1Google Scholar
Chen, P., Luo, Z., Guven, S., Tasoglu, S., Ganesan, A. V., Weng, A. & Demirci, U. 2014 Microscale assembly directed by liquid-based template. Adv. Mater. 26, 59365941.10.1002/adma.201402079Google Scholar
Cressman, J. R., Davoudi, J., Goldburg, W. I. & Schumacher, J. 2004 Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys. 6, 53.10.1088/1367-2630/6/1/053Google Scholar
Domino, L., Tarpin, M., Patinet, S. & Eddi, A. 2016 Faraday wave lattice as an elastic metamaterial. Phys. Rev. E 93, 050202.Google Scholar
Elhmaidi, D., Provenzale, A. & Babiano, A. 1993 Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech. 257, 533.10.1017/S0022112093003192Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.10.1038/nature00983Google Scholar
Falkovich, G., Boffetta, G., Shats, M. & Lanotte, A. S. 2017 Introduction to focus issue: two-dimensional turbulence. Phys. Fluids 29, 110901.10.1063/1.5012997Google Scholar
Faraday, M. 1831 On a peculiar class of acoustical and on certain forms assumed by groups of particles upon vibrating elastic surface. Phil. Trans. R. Soc. Lond. A 121, 299.Google Scholar
Francois, N., Xia, H., Punzmann, H. & Shats, M. 2013 Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves. Phys. Rev. Lett. 110, 194501.10.1103/PhysRevLett.110.194501Google Scholar
Francois, N., Xia, H., Punzmann, H., Ramsden, S. & Shats, M. 2014 Three-dimensional fluid motion in Faraday waves: creation of vorticity and generation of two-dimensional turbulence. Phys. Rev. X 4, 021021.Google Scholar
Francois, N., Xia, H., Punzmann, H. & Shats, M. 2015a Wave–particle interaction in the Faraday waves. Eur. Phys. J. E 38, 106.Google Scholar
Francois, N., Xia, H., Punzmann, H., Faber, B. & Shats, M. 2015b Braid entropy of two-dimensional turbulence. Sci. Rep. 5, 18564.10.1038/srep18564Google Scholar
Francois, N., Xia, H., Punzmann, H., Fontana, F. W. & Shats, M. 2017 Wave-based liquid-interface metamaterials. Nat. Commun. 7, 14325.10.1038/ncomms14325Google Scholar
Francois, N., Xia, H., Punzmann, H. & Shats, M. 2018 Rectification of chaotic fluid motion in two-dimensional turbulence. Phys. Rev. Fluids 3, 124602.10.1103/PhysRevFluids.3.124602Google Scholar
Gatignol, R. 1983 The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 1, 143.Google Scholar
Guyon, E., Hulin, J. P., Petit, L. & Mitescu, C. D. 2001 Physical Hydrodynamics. Oxford University Press.Google Scholar
Hansen, A. E., Schröder, E., Alstrøm, P., Andersen, J. S. & Levinsen, M. T. 1997 Fractal particle trajectories in capillary waves: imprint of wavelength. Phys. Rev. Lett. 79, 1845.10.1103/PhysRevLett.79.1845Google Scholar
Kraichnan, R. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417.10.1063/1.1762301Google Scholar
Kraichnan, R. & Montgomery, D. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43, 547.10.1088/0034-4885/43/5/001Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.10.1063/1.864230Google Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501.10.1103/PhysRevLett.87.214501Google Scholar
Monin, A. S. & A. M., Yaglom 1975 Statistical Fluid Mechanics, vol. 1. MIT.Google Scholar
Nathan, R., Katul, G. G., Horn, H. S., Thomas, S. M., Oren, R., Avissar, R., Pacala, S. W. & Levin, S. A. 2002 Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409413.10.1038/nature00844Google Scholar
Punzmann, H., Francois, N., Xia, H. & Shats, M. 2014 Generation and reversal of surface flows by propagating waves. Nat. Phys. 10, 658.10.1038/nphys3041Google Scholar
Ouellette, N. T., O’Malley, P. J. J. & Gollub, J. P. 2008 Transport of finite-sized particles in chaotic flow. Phys. Rev. Lett. 101, 174504.10.1103/PhysRevLett.101.174504Google Scholar
Qureshi, N. M., Bourgoin, M., Baudet, G., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.10.1103/PhysRevLett.99.184502Google Scholar
Rivera, M. K. & Ecke, R. E. 2016 Lagrangian statistics in weakly forced two-dimensional turbulence. Chaos 26, 013103.10.1063/1.4937163Google Scholar
Sokolov, M. K. & Reigada, R. 1999 Dispersion of passive particles by a quasi-two-dimensioanl turbulent flow. Phys. Rev. E 59, 5412.Google Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.10.1146/annurev.fluid.010908.165210Google Scholar
Vicsek, T. & Zafeiris, A. 2012 Collective motion. Phys. Rep. 517, 71.10.1016/j.physrep.2012.03.004Google Scholar
von Kameke, A., Huhn, F., Fernández-García, G., Muñuzuri, A. P. & Pérez-Muñuzuri, V. 2011 Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. Phys. Rev. Lett. 107, 074502.10.1103/PhysRevLett.107.074502Google Scholar
Welch, K. J., Liebman-Pelaez, A. & Corwin, E. I. 2016 Fluids by design using chaotic surface waves to create a metafluid that is Newtonian, thermal, and entirely tunable. Proc. Natl. Acad. Sci. USA 113, 10807.10.1073/pnas.1606461113Google Scholar
Xia, H., Shats, M. & Punzmann, H. 2010 Modulation instability and capillary wave turbulence. Europhys. Lett. 91, 14002.10.1209/0295-5075/91/14002Google Scholar
Xia, H., Francois, N., Punzmann, H. & Shats, M. 2013 Lagrangian scale of particle dispersion in turbulence. Nat. Commun. 4, 3013.10.1038/ncomms3013Google Scholar
Xia, H., Francois, N., Punzmann, H. & Shats, M. 2014 Taylor particle dispersion during transition to fully developed two-dimensional turbulence. Phys. Rev. Lett. 112, 104501.10.1103/PhysRevLett.112.104501Google Scholar
Xia, H. & Francois, N. 2017 Two-dimensional turbulence in three-dimensional flows. Phys. Fluids 29, 111107.10.1063/1.5000863Google Scholar
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows. Physica D 237, 20952100.Google Scholar
Xu, H., Pumir, A., Falkovich, G., Bodenschatz, E., Shats, M., Xia, H., Francois, N. & Boffetta, G. 2014 Flight-crash events in turbulence. Proc. Natl Acad. Sci. USA 111, 7558.10.1073/pnas.1321682111Google Scholar
Yang, J., Davoodianidalik, M., Xia, H., Punzmann, H., Shats, M. & Francois, N. 2019 Passive swimming in hydrodynamic turbulence at a fluid surface. Phys. Rev. Fluids (submitted).Google Scholar