Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T04:26:35.941Z Has data issue: false hasContentIssue false

Travelling convectons in binary fluid convection

Published online by Cambridge University Press:  28 March 2013

Isabel Mercader*
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Oriol Batiste
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Arantxa Alonso
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Edgar Knobloch
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]

Abstract

Binary fluid mixtures with a negative separation ratio heated from below exhibit steady spatially localized states called convectons for supercritical Rayleigh numbers. With no-slip, fixed-temperature, no-mass-flux boundary conditions at the top and bottom stationary odd- and even-parity convectons fall on a pair of intertwined branches connected by branches of travelling asymmetric states. In appropriate parameter regimes the stationary convectons may be stable. When the boundary condition on the top is changed to Newton’s law of cooling the odd-parity convectons start to drift and the branch of odd-parity convectons breaks up and reconnects with the branches of asymmetric states. We explore the dependence of these changes and of the resulting drift speed on the associated Biot number using numerical continuation, and compare and contrast the results with a related study of the Swift–Hohenberg equation by Houghton & Knobloch (Phys. Rev. E, vol. 84, 2011, art. 016204). We use the results to identify stable drifting convectons and employ direct numerical simulations to study collisions between them. The collisions are highly inelastic, and result in convectons whose length exceeds the sum of the lengths of the colliding convectons.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barten, W., Lücke, M., Kamps, M. & Schmitz, R. 1995 Convection in binary mixtures. II. Localized traveling waves. Phys. Rev. E 51, 56625680.CrossRefGoogle ScholarPubMed
Batiste, O. & Knobloch, E. 2005a Simulations of localized states of stationary convection in 3He–4He mixtures. Phys. Rev. Lett. 95, 244501-1–4.CrossRefGoogle ScholarPubMed
Batiste, O. & Knobloch, E. 2005b Simulations of oscillatory convection in 3He–4He mixtures in moderate aspect ratio containers. Phys. Fluids 17, 064102-1–14.CrossRefGoogle Scholar
Batiste, O., Knobloch, E., Alonso, A. & Mercader, I. 2006 Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149158.CrossRefGoogle Scholar
Batiste, O., Knobloch, E., Mercader, I. & Net, M. 2001 Simulations of oscillatory binary fluid convection in large aspect ratio containers. Phys. Rev. E 65, 016303-1–19.CrossRefGoogle ScholarPubMed
Beaume, C., Bergeon, A. & Knobloch, E. 2011 Homoclinic snaking of localized states in doubly diffusive convection. Phys. Fluids 23, 094102-1–13.CrossRefGoogle Scholar
Beck, M., Knobloch, J., Lloyd, D. J. B., Sandstede, B. & Wagenknecht, T. 2009 Snakes, ladders and isolas of localized patterns. SIAM J. Math. Anal. 41, 936972.CrossRefGoogle Scholar
Bensimon, D., Kolodner, P., Surko, C. M., Williams, H. & Croquette, V. 1990 Competing and coexisting dynamical states of travelling-wave convection in an annulus. J. Fluid Mech. 217, 441467.CrossRefGoogle Scholar
Bergeon, A., Burke, J., Knobloch, E. & Mercader, I. 2008 Eckhaus instability and homoclinic snaking. Phys. Rev. E 78, 046201-1–16.CrossRefGoogle ScholarPubMed
Bergeon, A. & Knobloch, E. 2008 Spatially localized states in natural doubly diffusive convection. Phys. Fluids 20, 034102-1–8.CrossRefGoogle Scholar
Blanchflower, S. 1999 Magnetohydrodynamic convectons. Phys. Lett. A 261, 7481.CrossRefGoogle Scholar
Burke, J. & Dawes, J. H. P. 2011 Localised states in an extended Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 11, 261284.CrossRefGoogle Scholar
Burke, J. & Knobloch, E. 2006 Localized states in the generalized Swift–Hohenberg equation. Phys. Rev. E 73, 056211-1–15.CrossRefGoogle ScholarPubMed
Burke, J. & Knobloch, E. 2007 Snakes and ladders: localized states in the Swift–Hohenberg equation. Phys. Lett. A 360, 681688.CrossRefGoogle Scholar
Burke, J. & Knobloch, E. 2009 Multipulse states in the Swift–Hohenberg equation. Discrete and Contin. Dyn. Syst. Suppl. 109117.Google Scholar
Clune, T. L. 1993 Pattern selection in convecting systems. PhD thesis, University of California at Berkeley.Google Scholar
Coullet, P., Goldstein, R. E. & Gunaratne, G. 1989 Parity-breaking transitions of modulated patterns in hydrodynamic systems. Phys. Rev. Lett. 63, 19541957.CrossRefGoogle ScholarPubMed
Dawes, J. H. P. 2007 Localized convection cells in the presence of a vertical magnetic field. J. Fluid Mech. 570, 385406.CrossRefGoogle Scholar
Dawes, J. H. P. 2009 Modulated and localized states in a finite domain. SIAM J. Appl. Dyn. Syst. 8, 909930.CrossRefGoogle Scholar
Falsaperla, P. & Mulone, G. 2010 Stability in the rotating Bénard problem with Newton–Robin and fixed heat flux boundary conditions. Mech. Res. Commun 37, 122128.CrossRefGoogle Scholar
Ghorayeb, K. & Mojtabi, A. 1997 Double diffusive convection in a vertical rectangular cavity. Phys. Fluids 9, 23392348.CrossRefGoogle Scholar
Greene, J. M. & Kim, J.-S. 1988 The steady states of the Kuramoto–Sivashinsky equation. Physica D 33, 99120.CrossRefGoogle Scholar
Houghton, S. M. & Knobloch, E. 2011 Swift–Hohenberg equation with broken cubic-quintic nonlinearity. Phys. Rev. E 84, 016204-1–10.CrossRefGoogle ScholarPubMed
Hugues, S. & Randriamampianina, A. 1998 An improved projection scheme applied to pseudospectral method for the incompressible Navier–Stokes equations. Intl. J. Numer. Meth. Fluids 28, 501521.3.0.CO;2-S>CrossRefGoogle Scholar
Iima, M. & Nishiura, Y. 2009 Unstable periodic solution controlling collision of localized convection cells in binary fluid mixture. Physica D 238, 449460.CrossRefGoogle Scholar
Jung, D. & Lücke, M. 2007 Bistability of moving and self-pinned fronts of supercritical localized convection structures. Europhys. Lett. 80, 14002-1–6.CrossRefGoogle Scholar
Knobloch, E. 1989 Pattern selection in binary fluid convection at positive separation ratios. Phys. Rev. A 40, 15491559.CrossRefGoogle ScholarPubMed
Knobloch, E. & Merryfield, W. 1992 Enhancement of diffusive transport in oscillatory flows. Astrophys. J. 401, 196205.CrossRefGoogle Scholar
Kolodner, P. 1991a Drifting pulses of traveling wave convection. Phys. Rev. Lett. 66, 11651168.CrossRefGoogle ScholarPubMed
Kolodner, P. 1991b Collisions between pulses of traveling-wave convection. Phys. Rev. A 44, 64666479.CrossRefGoogle ScholarPubMed
Kolodner, P. 1993 Coexisting traveling waves and steady rolls in binary-fluid convection. Phys. Rev. E 48, R665668.CrossRefGoogle ScholarPubMed
Kolodner, P., Surko, C. M. & Williams, H. 1989 Dynamics of traveling waves near onset of convection in binary fluid mixtures. Physica D 37, 319333.CrossRefGoogle Scholar
Lee, G. W., Lucas, P. & Tyler, A. 1983 Onset of Rayleigh–Bénard convection in binary liquid mixtures of 3He in 4He. J. Fluid Mech. 135, 235259.CrossRefGoogle Scholar
Lee, K. J., McCormick, W. D., Pearson, J. E. & Swinney, H. L. 1994 Experimental observation of self-replicating spots in a reaction–diffusion system. Nature 369, 215218.CrossRefGoogle Scholar
Lioubashevski, O., Hamiel, Y., Agnon, A., Reches, Z. & Fineberg, J. 1999 Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension. Phys. Rev. Lett. 83, 31903193.CrossRefGoogle Scholar
Lo Jacono, D., Bergeon, A. & Knobloch, E. 2010 Spatially localized binary fluid convection in a porous medium. Phys. Fluids 22, 073601-1–13.CrossRefGoogle Scholar
Lo Jacono, D., Bergeon, A. & Knobloch, E. 2011 Magnetohydrodynamic convectons. J. Fluid Mech. 687, 595605.CrossRefGoogle Scholar
Ma, Y.-P., Burke, J. & Knobloch, E. 2010 Defect-mediated snaking: a new growth mechanism for localized structures. Physica D 239, 18671883.CrossRefGoogle Scholar
Mamum, C. K. & Tuckerman, L. S. 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7, 8091.CrossRefGoogle Scholar
Mercader, I., Batiste, O. & Alonso, A. 2006 Continuation of traveling-wave solutions of the Navier–Stokes equations. Intl J. Numer. Meth. Fluids 52, 707721.CrossRefGoogle Scholar
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2009 Localized pinning states in closed containers: homoclinic snaking without bistability. Phys. Rev. E 80, 025201(R)-1–4.CrossRefGoogle ScholarPubMed
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2010 Convectons in periodic and bounded domains. Fluid Dyn. Res. 42, 025505-1–10.CrossRefGoogle Scholar
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2011a Convectons, anticonvectons and multiconvectons in binary fluid convection. J. Fluid Mech. 667, 586606.CrossRefGoogle Scholar
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2011b Dissipative solitons in binary fluid onvection. Discrete Contin. Dyn. Syst. Suppl. S4, 12131225.Google Scholar
Niemela, J. J., Ahlers, G. & Cannell, D. S. 1990 Localized traveling wave states in binary-fluid convection. Phys. Rev. Lett. 64, 13651368.CrossRefGoogle ScholarPubMed
Prat, J., Mercader, I. & Knobloch, E. 2000 Rayleigh–Bénard convection with experimental boundary conditions. In Bifurcation, Symmetry and Patterns (ed. Buescu, J., Castro, S., Dias, A. P. & Labouriau, I.), Trends in Mathematics, pp. 189195. Birkhäuser.Google Scholar
Proctor, M. R. E. 1981 Planform selection by finite-amplitude thermal convection between poorly conducting slabs. J. Fluid Mech. 113, 469485.CrossRefGoogle Scholar
Richter, R. & Barashenkov, I. V. 2005 Two-dimensional solitons on the surface of magnetic fluids. Phys. Rev. Lett. 94, 184503-1–4.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501-1–4.CrossRefGoogle ScholarPubMed
Steinberg, V., Fineberg, J., Moses, E. & Rehberg, I. 1989 Pattern selection and transition to turbulence in propagating waves. Physica D 37, 359383.CrossRefGoogle Scholar
Sullivan, T. S. & Ahlers, G. 1988 Nonperiodic time dependence at the onset of convection in a binary liquid mixture. Phys. Rev. A 38, 31433146.CrossRefGoogle Scholar
Surko, C. M., Ohlsen, D. R., Yamamoto, S. Y. & Kolodner, P. 1991 Confined states of traveling-wave convection. Phys. Rev. A 43, 71017104.CrossRefGoogle ScholarPubMed
Taraut, A. V., Smorodin, B. L. & Lücke, M. 2012 Collisions of localized convection structures in binary fluid mixtures. New J. Phys. 14, 093055-1–23.CrossRefGoogle Scholar
Umbanhowar, P. B., Melo, F. & Swinney, H. L. 1996 Localized excitations in a vertically vibrated granular layer. Nature 382, 793796.CrossRefGoogle Scholar
Vladimirov, A. G., McSloy, J. M., Skryabin, D. V. & Firth, W. J. 2002 Two-dimensional clusters of solitary structures in driven optical cavities. Phys. Rev. E 65, 046606-1–11.CrossRefGoogle ScholarPubMed
Watanabe, T., Iima, M. & Nishiura, Y. 2012 Spontaneous formation of traveling localized structures and their asymptotic behaviours in binary fluid convection. J. Fluid Mech. 712, 219243.CrossRefGoogle Scholar