Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T05:44:44.789Z Has data issue: false hasContentIssue false

A statistical mechanics approach to mixing in stratified fluids

Published online by Cambridge University Press:  01 December 2016

A. Venaille*
Affiliation:
Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
L. Gostiaux
Affiliation:
LMFA UMR 5509 CNRS, Université de Lyon, Ecole Centrale 69130 Écully Lyon, France
J. Sommeria
Affiliation:
LEGI, CNRS, Université de Grenoble, CS 40700 38058 Grenoble Cedex 9, France
*
Email address for correspondence: [email protected]

Abstract

Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a long-standing problem in stratified turbulence. The huge number of degrees of freedom involved in these processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding a prediction for a cumulative, global mixing efficiency as a function of a global Richardson number and the background buoyancy profile. Assuming random evolution through turbulent stirring, the theory predicts that the inviscid, adiabatic dynamics is attracted irreversibly towards an equilibrium state characterised by a smooth, stable buoyancy profile at a coarse-grained level, upon which are fine-scale fluctuations of velocity and buoyancy. The convergence towards a coarse-grained buoyancy profile different from the initial one corresponds to an irreversible increase of potential energy, and the efficiency of mixing is quantified as the ratio of this potential energy increase to the total energy injected into the system. The remaining part of the energy is lost into small-scale fluctuations. We show that for sufficiently large Richardson number, there is equipartition between potential and kinetic energy, provided that the background buoyancy profile is strictly monotonic. This yields a mixing efficiency of 0.25, which provides statistical mechanics support for previous predictions based on phenomenological kinematics arguments. In the general case, the cumulative, global mixing efficiency predicted by the equilibrium theory can be computed using an algorithm based on a maximum entropy production principle. It is shown in particular that the variation of mixing efficiency with the Richardson number strongly depends on the background buoyancy profile. This approach could be useful to the understanding of mixing in stratified turbulence in the limit of large Reynolds and Péclet numbers.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52 (24), 44104428.Google Scholar
Boucher, C., Ellis, R. S. & Turkington, B. 2000 Derivation of maximum entropy principles in two-dimensional turbulence via large deviations. J. Stat. Phys. 98 (5–6), 12351278.Google Scholar
Bouchet, F. & Corvellec, M. 2010 Invariant measures of the 2d Euler and Vlasov equations. J. Stat. Mech. 2010 (08), P08021.Google Scholar
Bouchet, F. & Simonnet, E. 2009 Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102 (9), 094504.Google Scholar
Bouchet, F. & Sommeria, J. 2002 Emergence of intense jets and jupiter’s great red spot as maximum-entropy structures. J. Fluid Mech. 464, 165207.Google Scholar
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227295.CrossRefGoogle Scholar
Bouffard, D. & Boegman, L. 2013 A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 61, 1434.CrossRefGoogle Scholar
Caulfield, C. P. & Kerswell, R. R. 2001 Maximal mixing rate in turbulent stably stratified couette flow. Phys. Fluids 13 (4), 894900.Google Scholar
Chavanis, P.-H. 2002 Statistical mechanics of two-dimensional vortices and stellar systems. In Dynamics and Thermodynamics of Systems with Long-range Interactions, pp. 208289. Springer.Google Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.CrossRefGoogle Scholar
Dalziel, S. B., Patterson, M. D., Caulfield, C. P. & Coomaraswamy, I. A. 2008 Mixing efficiency in high-aspect-ratio Rayleigh–Taylor experiments. Phys. Fluids 20 (6), 065106.Google Scholar
Davis Wykes, M. S., Hughes, G. O. & Dalziel, S. B. 2015 On the meaning of mixing efficiency for buoyancy-driven mixing in stratified turbulent flows. J. Fluid Mech. 781, 261275.CrossRefGoogle Scholar
Davis Wykes, M. S. D. & Dalziel, S. B. 2014 Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech. 756, 10271057.Google Scholar
Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78 (1), 87.Google Scholar
Falkovich, G., Gawȩdzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913.Google Scholar
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.Google Scholar
Gill, A. E. 1982 Atmosphere-ocean Dynamics, vol. 30. Academic.Google Scholar
Herbert, C., Pouquet, A. & Marino, R. 2014 Restricted equilibrium and the energy cascade in rotating and stratified flows. J. Fluid Mech. 758, 374406.Google Scholar
Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30 (2), 173198.Google Scholar
Hopfinger, E. J. 1987 Turbulence in stratified fluids: a review. J. Geophys. Res. 92 (C5), 52875303.Google Scholar
Huq, P. & Britter, R. E. 1995 Turbulence evolution and mixing in a two-layer stably stratified fluid. J. Fluid Mech. 285, 4168.Google Scholar
Ilıcak, M. 2014 Energetics and mixing efficiency of lock-exchange flow. Ocean Model. 83, 110.CrossRefGoogle Scholar
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40 (1), 169.Google Scholar
Kerstein, A. R. 1999 One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277334.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.Google Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32 (4), 363404.Google Scholar
Lee, T. D. 1952 On some statistical properties of hydrodynamical and magnetohydrodynamical fields. Q. Appl. Maths 10 (1), 6974.Google Scholar
Lindborg, E. 2005 The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett. 32 (1).CrossRefGoogle Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.Google Scholar
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.Google Scholar
Linden, P. F. 1980 Mixing across a density interface produced by grid turbulence. J. Fluid Mech. 100 (04), 691703.Google Scholar
Lozovatsky, I. D. & Fernando, H. J. S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. Lond. A 371 (1982), 20120213.Google Scholar
Lynden-Bell, D. 1967 Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101.Google Scholar
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.Google Scholar
Majda, A. & Wang, X. 2006 Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press.CrossRefGoogle Scholar
McEwan, A. D. 1983a Internal mixing in stratified fluids. J. Fluid Mech. 128, 5980.CrossRefGoogle Scholar
McEwan, A. D. 1983b The kinematics of stratified mixing through internal wavebreaking. J. Fluid Mech. 128, 4757.CrossRefGoogle Scholar
Merryfield, W. J. 1998 Effects of stratification on quasi-geostrophic inviscid equilibria. J. Fluid Mech. 354, 345356.Google Scholar
Michel, J. & Robert, R. 1994 Large deviations for young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law. Commun. Math. Phys. 159 (1), 195215.Google Scholar
Miller, J. 1990 Statistical mechanics of Euler equations in two-dimensions. Phys. Rev. Lett. 65 (17), 2137.CrossRefGoogle ScholarPubMed
Naso, A., Monchaux, R., Chavanis, P.-H. & Dubrulle, B. 2010 Statistical mechanics of beltrami flows in axisymmetric geometry: Theory reexamined. Phys. Rev. E 81 (6), 066318.Google Scholar
Obukhov, A. M. 1949 Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR Geogr. Geofiz. 13, 5869.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6, 279287.Google Scholar
Osborn, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10 (1), 8389.Google Scholar
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35 (1), 135167.Google Scholar
Pomeau, Y. 1994 Statistical approach (to 2D turbulence). In Turbulence: A Tentative Dictionary (ed. Cardoso, O. & Tabeling, P.), pp. 385447. Plenum.Google Scholar
Pope, S. B. 1985 Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (2), 119192.CrossRefGoogle Scholar
Potters, M., Vaillant, T. & Bouchet, F. 2013 Sampling microcanonical measures of the 2d Euler equations through Creutz’s algorithm: a phase transition from disorder to order when energy is increased. J. Stat. Mech. 2013 (02), P02017.Google Scholar
Prastowo, T., Griffiths, R. W., Hughes, G. & Hogg, A. M. 2008 Mixing efficiency in controlled exchange flows. J. Fluid Mech. 600, 235244.Google Scholar
Prieto, R. & Schubert, W. H. 2001 Analytical predictions for zonally symmetric equilibrium states of the stratospheric polar vortex. J. Atmos. Sci. 58 (18), 27092728.Google Scholar
Rehmann, C. R. & Koseff, J. R. 2004 Mean potential energy change in stratified grid turbulence. Dyn. Atmos. Oceans 37 (4), 271294.Google Scholar
Renaud, A., Venaille, A. & Bouchet, F. 2016 Equilibrium statistical mechanics and energy partition for the shallow water model. J. Stat. Phys. 163 (4), 784843.Google Scholar
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.Google Scholar
Robert, R. & Sommeria, J. 1992 Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett. 69 (19), 2776.CrossRefGoogle Scholar
Salehipour, H. & Peltier, W. R. 2015 Diapycnal diffusivity, turbulent prandtl number and mixing efficiency in boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.CrossRefGoogle Scholar
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics, vol. 378. Oxford University Press.Google Scholar
Salmon, R. 2012 Statistical mechanics and ocean circulation. Commun. Nonlinear Sci. Numer. Simul. 17 (5), 21442152.Google Scholar
Schecter, D. A. 2003 Maximum entropy theory and the rapid relaxation of three-dimensional quasi-geostrophic turbulence. Phys. Rev. E 68 (6), 066309.Google Scholar
Shepherd, T. G. 1993 A unified theory of available potential energy 1. Atmos.-Ocean 31 (1), 126.Google Scholar
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405 (6787), 639646.Google Scholar
Sommeria, J. 2001 Two-dimensional turbulence. In New Trends in Turbulence Turbulence: Nouveaux Aspects, pp. 385447. Springer.Google Scholar
Sreenivasan, K. R. 1996 The passive scalar spectrum and the obukhov–corrsin constant. Phys. Fluids 8 (1), 189196.Google Scholar
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34 (1), 559593.Google Scholar
Stretch, D. D., Rottman, J. W., Venayagamoorthy, S. K., Nomura, K. K. & Rehmann, C. R. 2010 Mixing efficiency in decaying stably stratified turbulence. Dyn. Atmos. Oceans 49 (1), 2536.Google Scholar
Sundaram, R. K. 1996 A First Course in Optimization Theory. Cambridge University Press.Google Scholar
Tabak, E. G. & Tal, F. A. 2004 Mixing in simple models for turbulent diffusion. Commun. Pure Appl. Maths 57 (5), 563589.Google Scholar
Tabeling, P. 2002 Two-dimensional turbulence: a physicist approach. Phys. Rep. 362 (1), 162.Google Scholar
Tailleux, R. G. J. 2009 Understanding mixing efficiency in the oceans. Do the nonlinearities of the equation of state for seawater matter? Ocean Sci. 5 (3), 271283.Google Scholar
Thalabard, S., Dubrulle, B. & Bouchet, F. 2014 Statistical mechanics of the 3d axisymmetric Euler equations in a Taylor–Couette geometry. J. Stat. Mech. 2014, P01005.Google Scholar
Thalabard, S., Saint-Michel, B., Herbert, É., Daviaud, F. & Dubrulle, B. 2015 A statistical mechanics framework for the large-scale structure of turbulent von Kármán flows. New J. Phys. 17 (6), 063006.Google Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.Google Scholar
Touchette, H. 2009 The large deviation approach to statistical mechanics. Phys. Rep. 478 (1), 169.Google Scholar
Townsend, A. A. 1958 The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech. 4 (04), 361375.CrossRefGoogle Scholar
Turkington, B., Majda, A., Haven, K. & DiBattista, M. 2001 Statistical equilibrium predictions of jets and spots on jupiter. Proc. Natl Acad. Sci. USA 98 (22), 1234612350.CrossRefGoogle ScholarPubMed
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.Google Scholar
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.Google Scholar
Venaille, A. 2012 Bottom-trapped currents as statistical equilibrium states above topographic anomalies. J. Fluid Mech. 699, 500510.CrossRefGoogle Scholar
Venaille, A. & Bouchet, F. 2011 Oceanic rings and jets as statistical equilibrium states. J. Phys. Oceanogr. 41, 18601873.Google Scholar
Venaille, A., Dauxois, T. & Ruffo, S. 2015 Violent relaxation in two-dimensional flows with varying interaction range. Phys. Rev. E 92 (1), 011001.Google Scholar
Venaille, A. & Sommeria, J. 2010 Modeling mixing in two-dimensional turbulence and stratified fluids. In Proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, vol. 28, p. 155. Springer.Google Scholar
Venaille, A., Vallis, G. K. & Griffies, S. M. 2012 The catalytic role of the beta effect in barotropization processes. J. Fluid Mech. 709, 490515.CrossRefGoogle Scholar
Venayagamoorthy, S. K. & Koseff, J. R. 2016 On the flux Richardson number in stably stratified turbulence. J. Fluid Mech. 798, R1.Google Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.Google Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.Google Scholar
Warn, T. 1986 Statistical mechanical equilibria of the shallow water equations. Tellus A 38 (1).Google Scholar
Weichman, P. B. 2006 Equilibrium theory of coherent vortex and zonal jet formation in a system of nonlinear Rossby waves. Phys. Rev. E 73 (3), 036313.Google Scholar
Weichman, P. B. & Petrich, D. M. 2001 Statistical equilibrium solutions of the shallow water equations. Phys. Rev. Lett. 86, 17611764.Google Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.Google Scholar
Wunsch, S. C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.Google Scholar