Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T11:08:30.860Z Has data issue: false hasContentIssue false

Stabilization of dielectric liquid bridges by electric fields in the absence of gravity

Published online by Cambridge University Press:  26 April 2006

H. González
Affiliation:
Dpto Electrónica y Electromagnetismo, Universidad de Sevilla, Spain
F. M. J. Mccluskey
Affiliation:
Dpto Física Fundamental, U.N.E.D. Madrid, Spain
A. Castellanos
Affiliation:
Dpto Electrónica y Electromagnetismo, Universidad de Sevilla, Spain
A. Barrero
Affiliation:
Dpto de Ingeniería Energética y Mecánica de Fluidos, Universidad de Sevilla, Spain

Abstract

The stability of liquid bridges in zero gravity conditions under the influence of an a.c. electric field tangential to the interface is examined in this paper. For the theoretical study, a static analysis was carried out to find the bifurcation surfaces as a function of the three relevant non-dimensional parameters: Λ, the slenderness or ratio of height to diameter of the cylindrical bridge; β0, the ratio of dielectric constants of the two fluids used and Ξ, a non-dimensional quantity proportional to the applied voltage. Stable and unstable regions of Λ−βo−Ξ space were distinguished. Results indicate a strong stabilizing effect for higher values of β0. The experimental study, using silicone and ricinus oil to approximate zero gravity conditions fully confirmed quantitatively the theoretical results.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheng, K. J. & Chaddock, J. B. 1984 Deformation and stability of drops and bubbles in an electric field.. Phys. Lett. A 106, 5153.Google Scholar
Denat, A., Gosse, B. & Gosse, J. P. 1979 Ion injections in hydrocarbons. J. Electrostat. 7, 205225.Google Scholar
González, H., Castellanos, A., McCluskey, F. M. J. & Ganan, A. 1988 Small oscillations of liquid bridges subjected to a.c. electric fields. In Synergetics, Order and Chaos. World Scientific (in press).
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academic.
Hurle, D. T. J., Müller, G. & Nitsche, R. 1987 Cristal growth from the melt. In Fluid Science and Materials Sciences in Space, chap. X. Springer.
Landau, L. M. & Lifshitz, E. M. 1971 Electrodynamics of Continuous Media. Addison-Wesley.
Martinez, I., Haynes, J. M. & Langbein, D. 1987 Fluid Statics and Capillarity. In Fluid Science and Materials Sciences in space, chap. II. Springer.
Melcher, J. R. 1963 Field-Coupled Surface Waves. M.I.T. Press.
Melcher, J. R. & Hurwitz, M. 1967 Gradient stabilization of electrohydrodynamically oriented liquids. J. Spacecraft Rockets 4, 864871.Google Scholar
Melcher, J. R. & Schwarz, W. J. 1968 Interfacial relaxation overstability in a tangential electric field. Phys. Fluids 11, 26042616.Google Scholar
Miksis, M. J. 1981 Shape of a drop in an electric field. Phys. Fluids 24, 19671972.Google Scholar
Nayyar, N. K. & Murty, G. S. 1960 The stability of a dielectric liquid jet in the presence of a longitudinal electric field. Proc. Phys. Soc. Lond. 75, 369373.Google Scholar
Rivas, D. & Meseguer, J. 1984 One-dimensional self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138, 417429.Google Scholar
Rosenkilde, C. E. 1969 A dielectric fluid drop in an electric field.. Proc. R. Soc. Lond. A 312, 473494.Google Scholar
Sanz, A. 1985 The influence of an outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156, 101140.Google Scholar
Saville, D. A. 1970 Electrohydrodynamic stability: fluid cylinders in longitudinal electric fields. Phys. Fluids 13, 29872994.Google Scholar
Struik, D. J. 1957 Classical Differential Geometry. Addison-Wesley.