Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T21:52:16.540Z Has data issue: false hasContentIssue false

Solid landslide generated waves

Published online by Cambridge University Press:  25 March 2011

YANG WANG
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853-3501, USA Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
PHILIP L.-F. LIU*
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853-3501, USA Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli 32001, Taiwan
CHIANG C. MEI
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853-3501, USA Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139-4307, USA
*
Email address for correspondence: [email protected]

Abstract

Theoretical formulation describing the wave generation by a slender solid landslide is presented. The slide motion is coupled with the surface wave dynamics and both the fluid viscous (lubricative) resistance and the solid friction are considered.

Numerical results are obtained for a cosine function shape slide. Numerical results show clearly the importance of the dynamic nonlinear coupling. The effects of lubricative resistance, solid friction, initial landslide speed and the slide height are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U. & Synolakis, C. E. 1995 Runup of solitary waves on a circular island. J. Fluid Mech. 302, 259285.CrossRefGoogle Scholar
Liu, P. L.-F., Lynett, P. & Synolakis, C. E. 2003 Analytical solutions for forced long waves on a sloping beach. J. Fluid Mech. 478, 101109.CrossRefGoogle Scholar
Liu, P.-F., Wu, T.-R., Raichlen, F., Synolakis, C. E. & Borrero, J. C. 2005 Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107144.CrossRefGoogle Scholar
Lynett, P. & Liu, P. L.-F. 2002 A numerical study of submarine-landslide-generated waves and run-up. Proc. R. Soc. Lond. A 458, 28852910.CrossRefGoogle Scholar
Lynett, P. & Liu, P. L.-F. 2005 A numerical study of the runup generated by three dimensional landslides. J. Geophys. Res. 110, doi:10.1029/2004JC002443.Google Scholar
Pelinovsky, E. & Poplavasky, A. 1996 Simplified model of tsunami generation by submarine landslide. Phys. Chem. Earth 21 (12), 1317.CrossRefGoogle Scholar
Renzi, E. & Sammarco, P. 2010 Landslide tsunami propagating around a conical island. J. Fluid Mech. 650, 250285.CrossRefGoogle Scholar
Sammarco, P. & Renzi, E. 2008 Landslide tsunami propagating along a plane beach. J. Fluid Mech. 598, 107119.CrossRefGoogle Scholar
Synolakis, C. E., Bardet, J. P., Borrero, J., Davies, H., Okal, E. A., Silver, E. A., Sweet, S. & Tappin, D. R. 2002 Slump origin of 1998 Papua New Guinea tsunami. Proc. R. Soc. Lond. A 458, 736789.CrossRefGoogle Scholar
Tinti, S., Pagnoni, G., Zaniboni, F. & Bortolucci, E. 2003 Tsunami generation in Stromboli island and impact on the south-east Tyrrhenian coasts. Nat. Hazards Earth Syst. Sci. 3, 299309.CrossRefGoogle Scholar
Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J. & Tappin, D. R. 2003 Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat. Hazards Earth Syst. Sci. 3, 391402.CrossRefGoogle Scholar