Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T21:28:23.449Z Has data issue: false hasContentIssue false

Revisiting the linear stability analysis and absolute–convective transition of two fluid core annular flow

Published online by Cambridge University Press:  26 February 2019

D. Salin*
Affiliation:
Laboratoire FAST, Univ Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France
L. Talon
Affiliation:
Laboratoire FAST, Univ Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France
*
Email address for correspondence: [email protected]

Abstract

Numerous experimental, numerical and theoretical studies have shown that core annular flows can be unstable. This instability can be convective or absolute in different situations: miscible fluids with matched density but different viscosities, creeping flow of two immiscible fluids or buoyant flow along a fibre. The analysis of the linear stability of the flow equation of two fluids injected in a co-current and concentric manner into a cylindrical tube leads to a rather complex eigenvalue problem. Until now, all analytical solution to this problem has involved strong assumptions (e.g. lack of inertia) or approximations (e.g. developments at long or short wavelengths) even for axisymmetric disturbances. However, in this latter case, following C. Pekeris, who obtained, almost seventy years ago, an elegant explicit solution for the dispersion relationship of the flow of a single fluid, we derive an explicit solution for the more general case of two immiscible fluids of different viscosity, density and inertia separated by a straight interface. This formulation is well adapted to commercial software. First, we review the creeping flow limit (zero Reynolds number) of two immiscible fluids as it is used in microfluidics. Secondly, we consider the case of two fluids of different viscosities but of the same density in the absence of surface tension and also without diffusion (i.e. miscible fluids with infinite Schmidt number). In both cases, we study the transition from convective to absolute instability according to the different control parameters.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation.Google Scholar
Balasubramaniam, R., Rashidnia, N., Maxworthy, T. & Kuang, J. 2005 Instability of miscible interfaces in a cylindrical tube. Phys. Fluids 17, 052103.10.1063/1.1884645Google Scholar
Brevdo, L., Laure, P. & Bridges, T. J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.10.1017/S0022112099005790Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasma. MIT-Press.Google Scholar
Charru, F. & Fabre, J. 1994 Long waves at the interface between two viscous fluids. Phys. Fluids 6, 12231235.10.1063/1.868291Google Scholar
Chen, C.-Y. & Meiburg, E. 1996 Miscible displacement in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. 326, 5767.10.1017/S0022112096008245Google Scholar
Chomaz, J. M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37 (1), 357392.10.1146/annurev.fluid.37.061903.175810Google Scholar
Deissler, R. J. 1987 The convective nature of instability in plane Poiseuille flow. Phys. Fluids 30 (8), 23032305.10.1063/1.866118Google Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphine, F. 2007 Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.10.1103/PhysRevLett.98.244502Google Scholar
Gañán-Calvo, A. M., Herrada, M. A. & Garstecki, P. 2006 Bubbling in unbounded coflowing liquids. Phys. Rev. Lett. 96 (12), 124504.Google Scholar
Godreche, C. & Manneville, P. 1998 Hydrodynamics and Nonlinear Instabilities. Cambridge University Press.10.1017/CBO9780511524608Google Scholar
Govindarajan, R. & Sahu, K. C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46 (1), 331353.10.1146/annurev-fluid-010313-141351Google Scholar
Guillot, P., Colin, A. & Ajdari, A. 2008 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys. Rev. E 78, 016307.Google Scholar
Guillot, P., Colin, A., Utada, A. S. & Ajdari, A. 2007 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99 (10), 104502.10.1103/PhysRevLett.99.104502Google Scholar
Guyon, E., Hulin, J.-P., Petit, L. & de Gennes, P. G. 2001 Hydrodynamique Physique. EDP sciences Les Ulis.Google Scholar
Helmholtz, H. 1890 Die energie der wogen und des windes. Ann. Phys. 41, 641662.10.1002/andp.18902771202Google Scholar
Herrada, M. A., Gañán Calvo, A. M. & Guillot, P. 2008 Spatiotemporal instability of a confined capillary jet. Phys. Rev. E 78, 046312.Google Scholar
Hickox, C. E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids 14, 251262.10.1063/1.1693422Google Scholar
Hinch, E. J. 1984 A note on the mechanism of the instability at the interface between two shearing fluids. J. Fluid Mech. 144, 463465.10.1017/S0022112084001695Google Scholar
Hu, H. H. & Joseph, D. D. 1989 Lubricated pipelining: stability of core-annular flow. Part 2. J. Fluid Mech. 205, 395396.10.1017/S0022112089002077Google Scholar
Hu, X. & Cubaud, T. 2018 Viscous wave breaking and ligament formation in microfluidic systems. Phys. Rev. Lett. 121, 044502.10.1103/PhysRevLett.121.044502Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.10.1146/annurev.fl.22.010190.002353Google Scholar
Joseph, D. D., Bai, R., Chen, K. P. & Renardy, Y. Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech. 29, 6590.10.1146/annurev.fluid.29.1.65Google Scholar
Joseph, D. D., Renardy, M. & Renardy, Y. 1984 Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141, 309317.10.1017/S0022112084000860Google Scholar
Joseph, D. D. & Renardy, Y. Y. 1992a Fundamentals of Two-Fluid Dynamics. Part I: Mathematical Theory and Applications. Springer.Google Scholar
Joseph, D. D. & Renardy, Y. Y. 1992b Fundamentals of Two-Fluid Dynamics. Part II: Lubrificated Transport, Drops and Miscible Liquids. Springer.Google Scholar
Kelvin, Lord 1870 Hydrokinetic solutions and observations. Phil. Mag. 42, 362377.Google Scholar
Kouris, C. & Tsamopoulos, J. 2001 Dynamics of axisymmetric core-annular flow in a straight tube. I. The more viscous fluid in the core, bamboo waves. Phys. Fluids 13, 841858.10.1063/1.1352623Google Scholar
Kouris, C. & Tsamopoulos, J. 2002 Dynamics of the axisymmetric core-annular flow. II. The less viscous fluid in the core, saw tooth waves. Phys. Fluids 14, 10111029.10.1063/1.1445417Google Scholar
Kuang, J., Maxworthy, T. & Petitjeans, P. 2003 Miscible displacements between silicone oils in capillary tubes. Eur. J. Mech. B 22, 271277.10.1016/S0997-7546(03)00035-9Google Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. & Yortsos, Y. C. 1999 Miscible displacement in a Hell-Shaw cell at high rates. J. Fluid Mech. 398, 299319.10.1017/S0022112099006357Google Scholar
d’Olce, M., Martin, J., Rakotomalala, N., Salin, D. & Talon, L. 2008 Pearl and mushroom instability patterns in two miscible fluids core annular flow. Phys. Fluids 20, 24104.10.1063/1.2838582Google Scholar
d’Olce, M., Martin, J., Rakotomalala, N., Salin, D. & Talon, L. 2009 Convective/absolute instability in miscible core-annular flow. Part 1: experiments. J. Fluid Mech. 618, 305311.10.1017/S0022112008004230Google Scholar
Pekeris, C. L. 1948 Stability of the laminar flow through a straight pipe of circular cross-section to infinitesimal disturbances which are symmetrical about the axis of the pipe. Proc. Natl Acad. Sci. 34 (6), 285295.10.1073/pnas.34.6.285Google Scholar
Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. experiments. J. Fluid Mech. 326, 3756.10.1017/S0022112096008233Google Scholar
Rayleigh, Lord 1899 On the instability of jets. Sci. Pap. I, 361371.Google Scholar
Renardy, Y. 1987 Viscosity and density stratification in vertical Poiseuille flow. Phys. Fluids 30, 16381648.10.1063/1.866228Google Scholar
Sahu, K. C., Ding, H., Valluri, P. & Matar, O. K. 2009 Linear stability analysis and numerical simulation of miscible two-layer channel flow. Phys. Fluids 21, 042104.10.1063/1.3116285Google Scholar
Selvam, B., Merk, S., Govindarajan, R. & Meiburg, E. 2007 Stability of miscible core-annular flow with viscosity stratification. J. Fluid Mech. 592, 2349.10.1017/S0022112007008269Google Scholar
Selvam, B., Talon, L., Lesshaft, L. & Meiburg, E. 2009 Convective/absolute instability in miscible core-annular flow. Part 2: numerical simulation and nonlinear global modes. J. Fluid Mech. 618, 323348.10.1017/S0022112008004242Google Scholar
Sexl, T. 1927 Zur stabilitätsfrage der poiseuilleschen und couetteschen strömung. Ann. Phys. 388 (14), 835848.10.1002/andp.19273881405Google Scholar
Talon, L. & Meiburg, E. 2011 Plane Poiseuille flow of miscible layers with different viscosities: instabilities in the Stokes flow regime. J. Fluid Mech. 686, 484506.10.1017/jfm.2011.341Google Scholar
Utada, A. S., Fernandez-Nieves, A., Gordillo, J. M. & Weitz, D. A. 2008 Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100 (1), 014502.10.1103/PhysRevLett.100.014502Google Scholar
Utada, A. S., Fernandez-Nieves, A., Stone, H. A. & Weitz, D. A. 2007 Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99 (9), 094502.10.1103/PhysRevLett.99.094502Google Scholar
Yin, X.-Y., Sun, D.-J., Wei, M.-J. & Wu, J.-Z. 2000 Absolute and convective instability character of slender viscous vortices. Phys. Fluids 12, 10621072.10.1063/1.870361Google Scholar