Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T05:56:14.484Z Has data issue: false hasContentIssue false

Pulsating electrohydrodynamic cone-jets: from choked jet to oscillating cone

Published online by Cambridge University Press:  14 November 2011

David B. Bober
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
Chuan-Hua Chen*
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
*
Email address for correspondence: [email protected]

Abstract

Pulsating cone-jets occur in a variety of electrostatic spraying and printing systems. This paper reports an experimental study of the pulsation frequency to reconcile two models based on a choked jet and an oscillating cone, respectively. The two regimes are demarcated by the ratio of the supplied flow rate () to the minimum flow rate () required for a steady Taylor cone-jet. When , the electrohydrodynamic flow is choked at the nozzle because the intermittent jet, when on, emits mass at the minimum flow rate; the pulsation frequency in the choked jet regime is proportional to . When , the Taylor cone anchored at the nozzle experiences a capillary oscillation analogous to the Rayleigh mode of a free drop; the pulsation frequency in the oscillating cone regime plateaus to the capillary oscillation frequency, which is independent of .

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alexander, M., Paine, M. & Stark, J. 2006 Pulsation modes and the effect of applied voltage on current and flow rate in nanoelectrospray. Analyt. Chem. 78, 2658.CrossRefGoogle ScholarPubMed
2. Chen, C. 2011 Electrohydrodynamic stability. In Electrokinetics and Electrohydrodynamics in Microsystems (ed. Ramos, A. ). pp. 177220. Springer.CrossRefGoogle Scholar
3. Chen, C., Saville, D. & Aksay, I. 2006a Electrohydrodynamic ‘drop-and-place’ particle deployment. Appl. Phys. Lett. 88, 154104.CrossRefGoogle Scholar
4. Chen, C., Saville, D. & Aksay, I. 2006b Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89, 124103.CrossRefGoogle Scholar
5. Choi, H., Park, J., Park, O., Ferreira, P., Georgiadis, J. & Rogers, J. 2008 Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92, 123109.CrossRefGoogle Scholar
6. Chowdhury, S. & Chait, B. 1991 Method for the electrospray ionization of highly conductive aqueous solutions. Analyt. Chem. 63, 1660.CrossRefGoogle ScholarPubMed
7. Cloupeau, M. & Prunet-Foch, B. 1989 Electrostatic spraying of liquids in cone-jet mode. J. Electrostat. 22, 135.CrossRefGoogle Scholar
8. Cloupeau, M. & Prunet-Foch, B. 1994 Electrohydrodynamic spraying functioning modes: a critical review. J. Aerosol Sci. 25, 1021.CrossRefGoogle Scholar
9. Fernandez de la Mora, J. 1996 On the outcome of the coulombic fission of a charged isolated drop. J. Colloid Interface Sci. 178, 209.CrossRefGoogle Scholar
10. Fernandez de la Mora, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217.CrossRefGoogle Scholar
11. Fernandez de la Mora, J. & Loscertales, I. 1994 The current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155.CrossRefGoogle Scholar
12. Ganan-Calvo, A., Davila, J. & Barrero, A. 1997 Current and droplet size in the electrospraying of liquids. Scaling laws. J. Aerosol Sci. 28, 249.CrossRefGoogle Scholar
13. Juraschek, R. & Rollgen, F. 1998 Pulsation phenomena during electrospray ionization. Intl J. Mass. Spectrom. 177, 1.CrossRefGoogle Scholar
14. Lord, Rayleigh 1882 On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14, 184.Google Scholar
15. Lu, Y., Zhou, F., Shui, W., Bian, L., Guo, Y & Yang, P. 2001 Pulsed electrospray for mass spectrometry. Analyt. Chem. 73, 4748.CrossRefGoogle ScholarPubMed
16. Marginean, I., Nemes, P., Parvin, L. & Vertes, A. 2006 How much charge is there on a pulsating Taylor cone? Appl. Phys. Lett. 89, 064104.CrossRefGoogle Scholar
17. Marginean, I., Nemes, P. & Vertes, A. 2007 Astable regime in electrosprays. Phys. Rev. E 76, 026320.CrossRefGoogle ScholarPubMed
18. Paine, M. 2009 Transient electrospray behaviour following high voltage switching. Microfluid Nanofluid 6, 775.CrossRefGoogle Scholar
19. Park, J., Hardy, M., Kang, S., Barton, K., Adair, K., Mukhopadhyay, D., Lee, C., Strano, M., Alleyne, A, Georgiadis, J., Ferreira, P. & Rogers, J. 2007 High resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782.CrossRefGoogle ScholarPubMed
20. Parvin, L., Galicia, M., Gauntt, J., Carney, L., Nguyen, A., Park, E., Heffernan, L. & Vertes, A. 2005 Electrospray diagnostics by Fourier analysis of current oscillations and fast imaging. Analyt. Chem. 77, 3908.CrossRefGoogle ScholarPubMed
21. Stachewicz, U., Dijksman, J., Yurteri, C. & Marijnissen, J. 2010 Volume of liquid deposited per single event electrospraying controlled by nozzle front surface modification. Microfluid Nanofluid 9, 635.CrossRefGoogle Scholar
22. Stachewicz, U., Yurteri, C., Marijnissen, J. & Dijksman, J. 2009 Stability regime of pulse frequency for single event electrospraying. Appl. Phys. Lett. 95, 224105.CrossRefGoogle Scholar
23. Taylor, G. 1964 Disintigration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383.Google Scholar
24. Wei, J., Shui, W, Zhou, F., Lu, Y., Chen, K., Xu, G. & Yang, P 2002 Naturally and externally pulsed electrospray. Mass Spectrom. Rev. 21, 148.CrossRefGoogle ScholarPubMed
25. Wilm, M. & Mann, M. 1994 Electrospray and Taylor-cone theory. Dole’s beam of macromolecules at last? Intl J. Mass Spectrom. 136, 167.CrossRefGoogle Scholar
26. Xu, S. 2010 Operating regimes of self-regulated electrohydrodynamic cone-jets. MS thesis, Duke University.Google Scholar
27. Yogi, O., Kawakami, T., Yamauchi, M., Ye, J. & Ishikawa, M. 2001 On-demand droplet spotter for preparing pico- to femtoliter droplets on surfaces. Analyt. Chem. 73, 1896.CrossRefGoogle ScholarPubMed
28. Zhao, Y., Boreyko, J., Chiang, M., Baker, C. & Chen, C. 2009. Beetle inspired electrospray vapour chamber. Proceedings of the 2nd International Conference on Micro/Nanoscale Heat and Mass Transfer, Shanghai, China, Vol. 3, pp. 439-441.Google Scholar