Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T06:16:30.176Z Has data issue: false hasContentIssue false

Pressure fluctuations induced by a hypersonic turbulent boundary layer

Published online by Cambridge University Press:  13 September 2016

Lian Duan*
Affiliation:
Missouri University of Science and Technology, Rolla, MO 65409, USA
Meelan M. Choudhari
Affiliation:
NASA Langley Research Center, Hampton, VA 23681, USA
Chao Zhang
Affiliation:
Missouri University of Science and Technology, Rolla, MO 65409, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analysed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean-velocity profiles and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from Taylor’s hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The free-stream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the free-stream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

Type
Papers
Copyright
© Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2011 Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer. Phys. Fluids 23, 075110.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23, 085102.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Grasso, F. 2011 The wall pressure signature of transonic shock/boundary layer interaction. J. Fluid Mech. 671, 288312.CrossRefGoogle Scholar
Bies, D. W.1966 A review of flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structure reponse. NASA Tech. Rep. CR-626.CrossRefGoogle Scholar
Blake, W. K. 1986 Mechanics of Flow-Induced Sound and Vibration. Academic.Google Scholar
Bookey, P., Wyckham, C., Smits, A. J. & Martin, M. P.2005 New experimental data of stbli at dns/les accessible Reynolds numbers. AIAA Paper 2005-309.CrossRefGoogle Scholar
Bounitch, A., Lewis, D. R. & Lafety, J. F.2011 Experimental study of second-mode instabilities on a 7-degree cone at Mach 6. AIAA Paper 2011-1200.Google Scholar
Bradshaw, P. 1967 Inactive motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30, 241258.CrossRefGoogle Scholar
Bull, M. K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflection on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Cadot, O., Douady, S. & Couder, Y. 1995 Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys. Fluids 7, 630646.CrossRefGoogle Scholar
Casper, K. M.2011 Turbulent pressure fluctuations in a hypersonic boundary layer. Final Project Rep. AAE 626, Purdue University, West Lafayette, IN, USA, 2011.Google Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8), 14501460.CrossRefGoogle Scholar
Del Alamo, J. C. & Jimenez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Dolling, D. S. & Dussauge, J. P. 1989 A survey of measurements and measuring techniques in rapidly distorted compressible turbulent boundary layers. AGARDograph 315, 118.Google Scholar
Donaldson, J. & Coulter, S.1995 A review of free-stream flow fluctuation and steady-state flow quality measurements in the AEDC/VKF supersonic tunnel A and hypersonic tunnel B. AIAA Paper 95-6137.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Duan, L., Choudhari, M. M. & Wu, M. 2014 Numerical study of pressure fluctuations due to a supersonic turbulent boundary layer. J. Fluid Mech. 746, 165192.CrossRefGoogle Scholar
Duan, L. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.CrossRefGoogle Scholar
Eléna, M. & Lacharme, J. P. 1988 Experimental study of a supersonic turbulent boundary layer using a laser doppler anemometer. J. Méc. Théor. Appl. 7 (2), 175190.Google Scholar
Ffowcs-Williams, J. E. & Maidanik, G. 1965 The Mach wave field radiated by supersonic turbulent shear flows. J. Fluid Mech. 21, 641657.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N., Hambleton, W. T., Longmire, E. K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer uisng two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
Gloerfelt, X. & Berland, J. 2013 Turbulent boundary-layer noise: direct radiation at Mach number 0.5. J. Fluid Mech. 723, 318351.CrossRefGoogle Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Harris, J. & Blanchard, D.1982 Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow. NASA-TM-83207.Google Scholar
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Kat, R. De & Oudheusden, B. W. Van 2012 Instantaneous planar pressure determination from PIV in turbulent flows. Exp. Fluids 52 (5), 10891106.CrossRefGoogle Scholar
Kendall, J. M. 1970 Supersonic boundary layer transition studies. Space Program Summary 3, 4347.Google Scholar
Kida, S. & Miura, H. 1998 Identification and analysis of vortical structures. Eur. J. Mech. (B/Fluids) 17 (4), 471488.CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids 5 (3), 695706.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.CrossRefGoogle Scholar
Kistler, A. L. & Chen, W. S. 1963 The fluctuating pressure field in a supersonic turbulent boundary layer. J. Fluid Mech. 16, 4164.CrossRefGoogle Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657674.CrossRefGoogle Scholar
Laufer, J. 1964 Some statistical properties of the pressure field radiated by a turbulent boundary layer. Phys. Fluids 7 (8), 11911197.CrossRefGoogle Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. John Wiley & Sons.CrossRefGoogle Scholar
Maestrello, L. 1969 Radiation from and panel response to a supersonic turbulent boundary layer. J. Sound Vib. 10 (2), 261262.CrossRefGoogle Scholar
Marco, A. D., Camussi, R., Bernardini, M. & Pirozzoli, S. 2013 Wall pressure coherence in supersonic turbulent boundary layers. J. Fluid Mech. 732, 445456.CrossRefGoogle Scholar
Martín, M. P. 2007 DNS of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
Masutti, M., Chazot, E. & Carbonaro, M. 2012 Disturbance level characterization of a hypersonic blowdown facility. AIAA J. 50 (12).CrossRefGoogle Scholar
Morgan, B., Larsson, J., Kawai, S. & Lele, S. K. 2011 Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49 (3), 582597.CrossRefGoogle Scholar
Naka, Y., Stanislas, M., Foucaut, J. M., Coudert, S., Laval, J. P. & Obi, S. 2015 Space–time pressure–velocity correlations in a turbulent boundary layer. J. Fluid Mech. 771, 624675.CrossRefGoogle Scholar
Pate, S. R.1978 Dominance of radiated aerodynamic noise on boundary-layer transition in supersonic-hypersonic wind tunnels. Tech. Rep. AEDC-TR-77-107. Arnold Engineering Development Center.Google Scholar
Peltier, S. J., Humble, R. A. & Bowersox, R. D. W.2012 PIV of a Mach 5 turbulent boundary layer over diamond roughness elements. AIAA Paper 2012-3061.CrossRefGoogle Scholar
Phillips, O. M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9, 128.CrossRefGoogle Scholar
Piponniau, S., Dussauge, J. P., Debieve, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds numbers. J. Fluid Mech. 688, 120168.CrossRefGoogle Scholar
Priebe, S. & Martín, M. P. 2012 Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J. Fluid Mech. 699, 149.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schneider, S. P. 2001 Effects of high-speed tunnel noise on laminar-turbulent transition. J. Spacecr. Rockets 38 (3), 323333.CrossRefGoogle Scholar
Schneider, S. P. 2008 Development of hypersonic quiet tunnels. J. Spacecr. Rockets 45 (4), 641664.CrossRefGoogle Scholar
Simens, M. P., Jimenez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. American Institute of Physics.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re 𝜃 = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Stainback, P. C. 1971 Hypersonic boundary-layer transition in the presence of wind tunnel noise. AIAA J. 9 (12), 24752476.CrossRefGoogle Scholar
Steen, L. E.2010 Characterization and development of nozzles for a hypersonic quiet wind tunnel. Master’s thesis, Purdue University, West Lafayette, IN, USA.Google Scholar
Taylor, E. M., Wu, M. & Martín, M. P. 2006 Optimization of nonlinear error sources for weighted non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223 (1), 384397.CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68 (1), 124.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Tsuji, Y., Fransson, J. H. M., Alferdsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.CrossRefGoogle Scholar
Tsuji, Y., Imayama, S., Schlatter, P., Alfredsson, P. H., Johansson, A. V., Marusic, I., Hutchins, N. & Monty, J. 2012 Pressure fluctuation in high-Reynolds-number turbulent boundary layer: results from experiments and dns. J. Turbul. 13 (50), 119.CrossRefGoogle Scholar
Welch, P. D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU‐15, 7073.CrossRefGoogle Scholar
Williamson, J. H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.CrossRefGoogle Scholar
Willmarth, W. W. 1975 Wall pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7, 1336.CrossRefGoogle Scholar
Wu, M. & Martín, M. P 2007 Direct numerical simulation of supersonic boundary layer over a compression ramp. AIAA J. 45 (4), 879889.CrossRefGoogle Scholar
Wu, M. & Martín, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar
Xu, S. & Martín, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16 (7), 26232639.CrossRefGoogle Scholar