Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T01:59:00.006Z Has data issue: false hasContentIssue false

The origin of hysteresis in the flag instability

Published online by Cambridge University Press:  08 December 2011

Christophe Eloy*
Affiliation:
IRPHE, CNRS & Aix-Marseille Université, 49 rue Joliot-Curie, 13013 Marseille, France Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
Nicolas Kofman
Affiliation:
IRPHE, CNRS & Aix-Marseille Université, 49 rue Joliot-Curie, 13013 Marseille, France
Lionel Schouveiler
Affiliation:
IRPHE, CNRS & Aix-Marseille Université, 49 rue Joliot-Curie, 13013 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The flapping flag instability occurs when a flexible cantilevered plate is immersed in a uniform airflow. To this day, the nonlinear aspects of this aeroelastic instability are largely unknown. In particular, experiments in the literature all report a large hysteresis loop, while the bifurcation in numerical simulations is either supercritical or subcritical with a small hysteresis loop. In this paper, the discrepancy is addressed. First, weakly nonlinear stability analyses are conducted in the slender-body and two-dimensional limits, and, second, new experiments are performed with flat and curved plates. The discrepancy is attributed to inevitable planeity defects of the plates in the experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alben, S. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301.Google Scholar
2. Audoly, B. & Pomeau, Y. 2010 Elasticity and Geometry. Oxford.Google Scholar
3. Buchak, P., Eloy, C. & Reis, P. M. 2010 The clapping book: wind-driven oscillations in a stack of elastic sheets. Phys. Rev. Lett. 105, 194301.Google Scholar
4. Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.CrossRefGoogle Scholar
5. Datta, S. K. & Gottenberg, W. G. 1975 Instability of an elastic strip hanging in an airstream. J. Appl. Mech. 42, 195198.CrossRefGoogle Scholar
6. Doaré, O., Sauzade, M. & Eloy, C. 2011 Flutter of an elastic plate in a channel flow: confinement and finite-size effects. J. Fluids Struct. 27, 7688.CrossRefGoogle Scholar
7. Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97106.Google Scholar
8. Eloy, C., Souilliez, C. & Schouveiler, L. 2007 Flutter of a rectangular plate. J. Fluids Struct. 23, 904919.Google Scholar
9. Kornecki, A., Dowell, E. H. & O’Brien, J. 1976 On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47 (2), 163178.CrossRefGoogle Scholar
10. Lemaitre, C., Hémon, P. & de Langre, E. 2005 Instability of a long ribbon hanging in axial air flow. J. Fluids Struct. 20 (7), 913925.CrossRefGoogle Scholar
11. Lighthill, M. J. 1971 Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B 179, 125138.Google Scholar
12. Michelin, S., Llewellyn Smith, S. G. & Glover, B. J. 2008 Vortex shedding model of a flapping flag. J. Fluid Mech. 617, 110.CrossRefGoogle Scholar
13. Nayfeh, A. H. 1969 On the nonlinear Lamb–Taylor instability. J. Fluid Mech. 38, 619631.CrossRefGoogle Scholar
14. Païdoussis, M. P. 2004 Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Elsevier.Google Scholar
15. Peake, N. 1997 On the behaviour of a fluid-loaded cylindrical shell with mean flow. J. Fluid Mech. 338, 387410.Google Scholar
16. Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
17. Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.CrossRefGoogle Scholar
18. Taneda, S 1968 Waving motions of flags. J. Phys. Soc. Japan 24 (2), 392401.CrossRefGoogle Scholar
19. Tang, L. & Païdoussis, M. P. 2007 On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 305, 97115.CrossRefGoogle Scholar
20. Tang, D. M., Yamamoto, H. & Dowell, E. H. 2003 Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flow. J. Fluids Struct. 17, 225242.CrossRefGoogle Scholar
21. Yadykin, Y., Tenetov, V. & Levin, D. 2001 The flow-induced vibration of a flexible strip hanging vertically in a parallel flow. Part 1. Temporal aeroelastic instability. J. Fluids Struct. 15, 11671185.CrossRefGoogle Scholar
22. Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.CrossRefGoogle Scholar
23. Zhu, L. & Peskin, C. S. 2002 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452468.CrossRefGoogle Scholar