Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T04:08:08.589Z Has data issue: false hasContentIssue false

Numerical computation of solitary waves in a two-layer fluid

Published online by Cambridge University Press:  07 November 2011

H. C. Woolfenden*
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
E. I. Pǎrǎu
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
*
Email address for correspondence: [email protected]

Abstract

We consider steady two-dimensional flow in a two-layer fluid under the effects of gravity and surface tension. The upper fluid is bounded above by a free surface and the lower fluid is bounded below by a rigid bottom. We assume the fluids to be inviscid and the flow to be irrotational in each layer. Solitary wave solutions are found to the fully nonlinear problem using a boundary integral method based on the Cauchy integral formula. The behaviour of the solitary waves on the interface and free surface is determined by the density ratio of the two fluids, the fluid depth ratio, the Froude number and the Bond numbers. The dispersion relation obtained for the linearized equations demonstrates the presence of two modes: a ‘slow’ mode and a ‘fast’ mode. When a sufficiently strong surface tension is present only on the free surface, there is a region, or ‘gap’, between the two modes where no linear periodic waves are found. In-phase and out-of-phase solitary waves are computed in this spectral gap. Damped oscillations appear in the tails of the solitary waves when the value of the free-surface Bond number is either sufficiently small or large. The out-of-phase waves broaden as the Froude number tends towards a critical value. When surface tension is present on both surfaces, out-of-phase solitary waves are computed. Damped oscillations occur in the tails of the waves when the interfacial Bond number is sufficiently small. Oppositely oriented solitary waves are shown to coexist for identical parameter values.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akylas, T. J. & Grimshaw, R. H. J. 1992 Solitary internal waves with oscillatory tails. J. Fluid Mech. 242, 279298.Google Scholar
2. Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.Google Scholar
3. Barrandon, M. & Iooss, G. 2005 Water waves as a spatial dynamical system; infinite depth case. Chaos 15, 037112.Google Scholar
4. Benjamin, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241270.Google Scholar
5. Benjamin, T. B. 1967 Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (03), 559592.Google Scholar
6. Benjamin, T. B. 1992 A new kind of solitary wave. J. Fluid Mech. 245, 401411.Google Scholar
7. Calvo, D. C. & Akylas, T. R. 2003 On interfacial gravity–capillary solitary waves of the Benjamin type and their stability. Phys. Fluids 15, 12611270.Google Scholar
8. Camassa, R., Choi, W., Michallet, H., Rusas, P.-O. & Sveen, J. D. 2006 On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J. Fluid Mech. 549, 123.CrossRefGoogle Scholar
9. Choi, W. & Camassa, R. 1996 Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech. 313, 83103.Google Scholar
10. Choi, W. & Camassa, R. 1999 Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 396, 136.CrossRefGoogle Scholar
11. Craig, W., Guyenne, P. & Kalisch, H. 2005 Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Maths 58, 15871641.Google Scholar
12. Dias, F. & Il’ichev, A. 2001 Interfacial waves with free-surface boundary conditions: an approach via a model equation. Physica D 150 (3–4), 278300.Google Scholar
13. Dias, F. & Iooss, G. 1996 Capillary–gravity interfacial waves in infinite depth. Eur. J. Mech. (B/Fluids) 15, 367393.Google Scholar
14. Ekman, V. W. 1904 On dead water. Norwegian North Polar Expedition, 1893-1896, Scientific Results 5, 1150.Google Scholar
15. Evans, W. A. B. & Ford, M. J. 1996 An integral equation approach to internal (2-layer) solitary waves. Phys. Fluids 8, 20322047.CrossRefGoogle Scholar
16. Farmer, D. M. & Dungan Smith, J. 1980 Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res. A. Oceanogr. Res. Papers 27 (3–4), 239246.Google Scholar
17. Fochesato, C., Dias, F. & Grimshaw, R. 2005 Generalized solitary waves and fronts in coupled Korteweg–de Vries systems. Physica D 210, 96117.Google Scholar
18. Forbes, L. K. & Hocking, G. C. 2006 An intrusion layer in stationary incompressible fluids. Part 2. A solitary wave. Eur. J. Appl. Maths 17 (05), 577595.Google Scholar
19. Forbes, L. K., Hocking, G. C. & Farrow, D. E. 2006 An intrusion layer in stationary incompressible fluids. Part 1. Periodic waves. Eur. J. Appl. Maths 17 (05), 557575.CrossRefGoogle Scholar
20. Fructus, D. & Grue, J. 2004 Fully nonlinear solitary waves in a layered stratified fluid. J. Fluid Mech. 505, 323347.Google Scholar
21. Grimshaw, R. & Christodoulides, P. 2008 Gap-solitons in a three-layered stratified flow. Wave Motion 45 (6), 758769.CrossRefGoogle Scholar
22. Haut, T. S. & Ablowitz, M. J. 2009 A reformulation and applications of interfacial fluids with a free surface. J. Fluid Mech. 631, 375396.Google Scholar
23. Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.CrossRefGoogle Scholar
24. Iooss, G. 1999 Gravity and capillary–gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth. J. Math. Fluid Mech. 1, 2461.Google Scholar
25. Iooss, G., Lombardi, E. & Sun, S. M. 2002 Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation. Phil. Trans. R. Soc. Lond. A 360, 22452336.CrossRefGoogle ScholarPubMed
26. Joseph, R. I. 1977 Solitary waves in a finite depth fluid. J. Phys. A 10, L225L227.Google Scholar
27. Kakutani, T. & Yamasaki, N. 1978 Solitary waves on a two-layer fluid. J. Phys. Soc. Japan 45, 674679.CrossRefGoogle Scholar
28. Kim, B. & Akylas, T. R. 2006 On gravity–capillary lumps. Part 2 Two-dimensional Benjamin equation. J. Fluid Mech. 557, 237256.CrossRefGoogle Scholar
29. Laget, O. & Dias, F. 1997 Numerical computation of capillary–gravity interfacial solitary waves. J. Fluid Mech. 349, 221251.Google Scholar
30. Lamb, K. G. 2000 Conjugate flows for a three-layer fluid. Phys. Fluids 12, 21692185.Google Scholar
31. Lombardi, E. & Iooss, G. 2003 Gravity solitary waves with polynomial decay to exponentially small ripples at infinity. Ann. Inst. Henri Poincaré C. Non-Linear Anal. 20, 669704.Google Scholar
32. Mercier, M. J., Vasseur, R. & Dauxois, T. 2011 Resurrecting dead-water phenomenon. Nonlin. Process. Geophys. 18, 193208.Google Scholar
33. Michallet, H. & Barthelemy, E. 1998 Experimental study of interfacial solitary waves. J. Fluid Mech. 366, 159177.Google Scholar
34. Michallet, H. & Dias, F. 1999 Numerical study of generalized interfacial solitary waves. Phys. Fluids 11, 1502.Google Scholar
35. Moni, J. N. & King, A. C. 1995 Guided and unguided interfacial solitary waves. Q. J. Mech. Appl. Maths 48 (1), 21.Google Scholar
36. Ono, H. 1975 Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (4), 10821091.CrossRefGoogle Scholar
37. Osborne, A. R., Burch, T. L. & Scarlet, R. I. 1978 The influence of internal waves on deep-water drilling. J. Petrol. Tech. 30 (10), 14971504.Google Scholar
38. Pǎrǎu, E. 2000 Ondes interfaciales de flexion-gravité et de capillarité-gravité. PhD thesis, Univ. de Nice Sophia Antipolis, and West Univ. of Timisoara.Google Scholar
39. Pǎrǎu, E. & Dias, F. 2001 Interfacial periodic waves of permanent form with free-surface boundary conditions. J. Fluid Mech. 437, 325336.Google Scholar
40. Pǎrǎu, E. & Sasu, B. 1996 Surface–interface solitary waves. Semin. Math. Anal. Appl. 72, 111.Google Scholar
41. Pǎrǎu, E. I., Vanden-Broeck, J.-M. & Cooker, M. J. 2007 Nonlinear three-dimensional interfacial flows with a free surface. J. Fluid Mech. 591, 481494.Google Scholar
42. Peters, A. S. & Stoker, J. J. 1960 Solitary waves in liquid having non-constant density. Commun. Pure Appl. Maths 13, 115164.Google Scholar
43. Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
44. Rusås, P.-O. & Grue, J. 2002 Solitary waves and conjugate flows in a three-layer fluid. Eur. J. Mech. (B/Fluids) 21, 185206.CrossRefGoogle Scholar
45. Turner, R. E. L. & Vanden-Broeck, J.-M. 1988 Broadening of interfacial solitary waves. Phys. Fluids 31, 24862490.Google Scholar
46. Vanden-Broeck, J.-M. 2010 Gravity–Capillary Free-Surface Flows. Cambridge University Press.Google Scholar