Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T04:57:45.881Z Has data issue: false hasContentIssue false

Modelling size segregation of granular materials: the roles of segregation, advection and diffusion

Published online by Cambridge University Press:  21 February 2014

Yi Fan*
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA The Dow Chemical Company, Midland, MI 48667, USA
Conor P. Schlick
Affiliation:
Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
Paul B. Umbanhowar
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
Julio M. Ottino
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA The Northwestern University Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA
Richard M. Lueptow*
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA The Northwestern University Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Predicting segregation of granular materials composed of different-sized particles is a challenging problem. In this paper, we develop and implement a theoretical model that captures the interplay between advection, segregation and diffusion in size bidisperse granular materials. The fluxes associated with these three driving factors depend on the underlying kinematics, whose characteristics play key roles in determining particle segregation configurations. Unlike previous models for segregation, our model uses parameters based on kinematic measures from discrete element method simulations instead of arbitrarily adjustable fitting parameters, and it achieves excellent quantitative agreement with both experimental and simulation results when applied to quasi-two-dimensional bounded heaps. The model yields two dimensionless control parameters, both of which are only functions of control parameters (feed rate, particle sizes, and system size) and kinematic parameters (diffusion coefficient, flowing layer depth, and percolation velocity). The Péclet number, $\mathit{Pe}$, captures the interplay of advection and diffusion, and the second dimensionless parameter, $\Lambda $, describes the interplay between segregation and advection. A parametric study of $\Lambda $ and $\mathit{Pe}$ demonstrates how the particle segregation configuration depends on the interplay of advection, segregation and diffusion. The model can be readily adapted to other flow geometries.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

̃eferences

Ames, W. F. 1977 Numerical Methods for Partial Differential Equations. 2nd edn. Academic.Google Scholar
Aranson, I. S. & Tsimring, L. S. 2006 Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641692.CrossRefGoogle Scholar
Arnarson, B. Ö. & Willits, J. T 1998 Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 13241328.Google Scholar
Besseling, R., Weeks, E. R., Schofield, A. B. & Poon, W. C. K. 2007 Three-dimensional imaging of colloidal glasses under steady shear. Phys. Rev. Lett. 99 (2), 28301.Google Scholar
Boutreux, T. 1998 Surface flows of granular mixtures: II. Segregation with grains of different size. Eur. Phys. J. B 6 (3), 419424.CrossRefGoogle Scholar
Boutreux, T. & de Gennes, P.-G. 1996 Surface flows of granular mixtures: I. General principles and minimal model. J. Phys. I 6, 12951304.Google Scholar
Bridgwater, J. 1980 Self-diffusion coefficients in deforming powders. Powder Technol. 25 (1), 129131.CrossRefGoogle Scholar
Bridgwater, J. 2012 Mixing of powders and granular materials by mechanical means – a perspective. Particuology 10 (4), 397427.Google Scholar
Bridgwater, J., Cooke, M. H. & Scott, A. M. 1978 Interparticle percolation: equipment development and mean percolation velocities. Trans. Inst. Chem. Engrs 56, 157167.Google Scholar
Campbell, C. S. 1997 Self-diffusion in granular shear flows. J. Fluid Mech. 348 (1), 85101.CrossRefGoogle Scholar
Chen, P., Ottino, J. M. & Lueptow, R. M. 2008 Subsurface granular flow in rotating tumblers: a detailed computational study. Phys. Rev. E 78, 021303.Google Scholar
Chen, P., Ottino, J. M. & Lueptow, R. M. 2011 Granular axial band formation in rotating tumblers: a discrete element method study. New J. Phys. 13, 055021.Google Scholar
Christov, I. C., Ottino, J. M. & Lueptow, R. M. 2011 From streamline jumping to strange eigenmodes: bridging the Lagrangian and Eulerian pictures of the kinematics of mixing in granular flows. Phys. Fluids 23 (10), 103302.CrossRefGoogle Scholar
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29, 4765.CrossRefGoogle Scholar
Danckwerts, P. V. 1952 The definition and measurement of some characteristics of mixtures. Appl. Sci. Res., Sec. A 3 (4), 279296.Google Scholar
Dolgunin, V. N., Kudy, A. N. & Ukolov, A. A. 1998 Development of the model of segregation of particles undergoing granular flow down an inclined chute. Powder Technol. 96 (3), 211218.Google Scholar
Drahun, J. A. & Bridgwater, J. 1983 The mechanisms of free surface segregation. Power Technol. 36, 3953.Google Scholar
Fan, Y., Boukerkour, Y., Blanc, T., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. 2012 Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps. Phys. Rev. E 86, 051305.CrossRefGoogle ScholarPubMed
Fan, Y. & Hill, K. M. 2010 Shear-driven segregation of dense granular mixtures in a split-bottom cell. Phys. Rev. E 81 (4), 041303.CrossRefGoogle Scholar
Fan, Y. & Hill, K. M. 2011a Phase transitions in shear-induced segregation of granular materials. Phys. Rev. Lett. 106, 218301.Google Scholar
Fan, Y. & Hill, K. M. 2011b Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13, 095009.CrossRefGoogle Scholar
Fan, Y., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. 2013 Kinematics of monodisperse and bidisperse granular flows in quasi-two-dimensional bounded heaps. Proc. R. Soc. A 469, 20130235.Google Scholar
Galvin, J. E., Dahl, S. R. & Hrenya, C. M. 2005 On the role of non-equipartition in the dynamics of rapidly flowing granular mixtures. J. Fluid Mech. 528, 207232.Google Scholar
GDR MiDi, 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.Google Scholar
Golick, L. A. & Daniels, K. E. 2009 Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80, 042301.CrossRefGoogle ScholarPubMed
Goyal, R. K. & Tomassone, M. S. 2006 Power-law and exponential segregation in two-dimensional silos of granular mixtures. Phys. Rev. E 74, 051301.Google Scholar
Gray, J. M. N. T. & Ancey, C. 2009 Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387423.Google Scholar
Gray, J. M. N. T. & Chugunov, V. A. 2006 Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech. 569, 365398.CrossRefGoogle Scholar
Gray, J. M. N. T. & Thornton, A. R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A 461, 14471473.Google Scholar
Hajra, S. K., Shi, D. & McCarthy, J. J. 2012 Granular mixing and segregation in zigzag chute flow. Phys. Rev. E 86, 061318.CrossRefGoogle ScholarPubMed
Hill, K. M. & Fan, Y. 2008 Isolating segregation mechanisms in a split-bottom cell. Phys. Rev. Lett. 101, 088001.Google Scholar
Hill, K. M., Khakhar, D. V., Gilchrist, J. F., McCarthy, J. J & Ottino, J. M. 1999 Segregation-driven organization in chaotic granular flows. Proc. Natl Acad. Sci. 96, 1170111706.Google Scholar
Hsiau, S. S. & Hunt, M. L. 1996 Granular thermal diffusion in flows of binary-sized mixtures. Acta Mechanica 114 (1), 121137.Google Scholar
Iverson, R. M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245296.Google Scholar
Jain, Nitin, Ottino, J. M. & Lueptow, R. M. 2002 An experimental study of the flowing granular layer in a rotating tumbler. Phys. Fluids 14 (2), 572582.Google Scholar
Jenkins, J. T. & Mancini, F. 1989 Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 20502057.CrossRefGoogle Scholar
Jones, S. W. 1994 Interaction of chaotic advection and diffusion. Chaos, Solitons Fractals 4, 929940.CrossRefGoogle Scholar
Katsuragi, H., Abate, A. R. & Durian, D. J. 2010 Jamming and growth of dynamical heterogeneities versus depth for granular heap flow. Soft Matt. 6, 30233029.Google Scholar
Khakhar, D. V., McCarthy, J. J. & Ottino, J. M. 1999 Mixing and segregation of granular materials in chute flows. Chaos 9 (3), 594610.CrossRefGoogle ScholarPubMed
Khosropour, R., Zirinsky, Jessie, Pak, H. K. & Behringer, R. P. 1997 Convection and size segregation in a Couette flow of granular material. Phys. Rev. E 56, 44674473.Google Scholar
Knight, J. B., Jaeger, H. M. & Nagel, S. R. 1993 Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 37283731.Google Scholar
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 17571760.Google Scholar
Kowalski, J. & McElwaine, J. N. 2013 Shallow two-component gravity-driven flows with vertical variation. J. Fluid Mech. 714, 434462.Google Scholar
Kudrolli, A. 2004 Size separation in vibrated granular matter. Rep. Prog. Phys. 67 (3), 209247.Google Scholar
Larcher, M. & Jenkins, J. T. 2013 Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25 (11), 113301.Google Scholar
Makse, H. A., Havlin, S., King, P. R. & Stanley, H. E. 1997 Spontaneous stratification in granular mixtures. Nature 386, 379382.Google Scholar
Marks, B., Rognon, P. & Einav, I. 2011 Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690, 499511.CrossRefGoogle Scholar
May, L. B. H., Golick, L. A., Phillips, K. C., Shearer, M. & Daniels, K. E. 2010 Shear-driven size segregation of granular materials: modelling and experiment. Phys. Rev. E 81, 051301.Google Scholar
Meier, S. W., Lueptow, R. M. & Ottino, J. M. 2007 A dynamical systems approach to mixing and segregation of granular materials in tumblers. Adv. Phys. 56 (5), 757827.CrossRefGoogle Scholar
Ott, E., Du, Y., Sreenivasan, K. R., Juneja, A. & Suri, A. K. 1992 Sign-singular measures: fast magnetic dynamos, and high-Reynolds-number fluid turbulence. Phys. Rev. Lett. 69 (18), 26542657.CrossRefGoogle ScholarPubMed
Ottino, J. M. & Khakhar, D. V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 5591.Google Scholar
Pouliquen, O., Delour, J. & Savage, S. B 1997 Fingering in granular flows. Nature 386, 816817.CrossRefGoogle Scholar
Rahman, M., Shinohara, K., Zhu, H. P., Yu, A. B. & Zulli, P. 2011 Size segregation mechanism of binary particle mixture in forming a conical pile. Chem. Engng Sci. 66, 60896098.CrossRefGoogle Scholar
Rapaport, D. C. 2002 Simulational studies of axial granular segregation in a rotating cylinder. Phys. Rev. E 65, 061306.Google Scholar
Ristow, G. H. 2000 Pattern Formation in Granular Materials. Springer.Google Scholar
Rosato, A., Strandburg, K. J., Prinz, F. & Swendsen, R. H. 1987 Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 10381040.Google Scholar
Savage, S. B. & Dai, R. 1993 Studies of granular shear flows wall slip velocities, layering and self-diffusion. Mech. Mater. 16 (1), 225238.Google Scholar
Savage, S. B. & Lun, C. K. K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.Google Scholar
Schafer, J., Dippel, S. & Wolf, D. E. 1996 Force schemes in simulations of granular materials. J. Phys. I France 6, 520.CrossRefGoogle Scholar
Schlick, C. P., Christov, I. C., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. 2013 A mapping method for distributive mixing with diffusion: Interplay between chaos and diffusion in time-periodic sine flow. Phys. Fluids 25 (5), 052102.Google Scholar
Shinohara, K., Shoji, K. & Tanaka, T. 1972 Mechanism of size segregation of particles in filling a hopper. Ind. Eng. Chem. Process Des. Dev. 11, 369376.CrossRefGoogle Scholar
Silbert, L. E., Grest, G. S., Brewster, R. & Levine, A. J. 2007 Rheology and contact lifetimes in dense granular flows. Phys. Rev. Lett. 99, 068002.Google Scholar
Singh, M. K., Galaktionov, O. S., Meijer, H. E. H. & Anderson, P. D. 2009a A simplified approach to compute distribution matrices for the mapping method. Comput. Chem. Engng 33 (8), 13541362.Google Scholar
Singh, M. K., Speetjens, M. F. M. & Anderson, P. D. 2009b Eigenmode analysis of scalar transport in distributive mixing. Phys. Fluids 21 (9), 093601.Google Scholar
Socie, B. A., Umbanhowar, P., Lueptow, R. M., Jain, N. & Ottino, J. M. 2005 Creeping motion in granular flow. Phys. Rev. E 71, 031304.CrossRefGoogle ScholarPubMed
Thornton, A., Weinhart, T., Luding, S. & Bokhove, O. 2012 Modelling of particle size segregation: calibration using the discrete particle method. Intl J. Mod. Phys. C 23 (08), 1240014.Google Scholar
Thornton, A. R., Gray, J. M. N. T. & Hogg, A. J. 2006 A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550, 126.Google Scholar
Tripathi, A. & Khakhar, DV 2013 Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717, 643669.CrossRefGoogle Scholar
Utter, B. & Behringer, R. P. 2004 Self-diffusion in dense granular shear flows. Phys. Rev. E 69, 031308.Google Scholar
Wandersman, E., Dijksman, J. A. & van Hecke, M. 2012 Particle diffusion in slow granular bulk flows. Europhys. Lett. 100 (3), 38006.Google Scholar
Wiederseiner, S., Andreini, N., Epely-Chauvin, G., Moser, G., Monnereau, M., Gray, J. M. N. T. & Ancey, C. 2011 Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301.CrossRefGoogle Scholar
Williams, J. C. 1963 The segregation of powders and granular materials. Univ. Sheffield Fuel Soc. J. 14, 2934.Google Scholar
Williams, J. C 1968 The mixing of dry powders. Powder Technol. 2, 1320.Google Scholar
Yoon, D. K. & Jenkins, J. T. 2006 The influence of different species granular temperatures on segregation in a binary mixture of dissipative grains. Phys. Fluids 18 (7), 073303.Google Scholar