Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T09:55:03.976Z Has data issue: false hasContentIssue false

Microstreaming generated by two acoustically induced gas bubbles

Published online by Cambridge University Press:  04 May 2016

Alexander A. Doinikov*
Affiliation:
INSERM U930, Université François Rabelais, 10 Boulevard Tonnellé, BP 3223, 37032 Tours CEDEX 1, France
Ayache Bouakaz
Affiliation:
INSERM U930, Université François Rabelais, 10 Boulevard Tonnellé, BP 3223, 37032 Tours CEDEX 1, France
*
Email address for correspondence: [email protected]

Abstract

A theory is developed that describes microstreaming generated by two interacting gas bubbles in an acoustic field. The theory is used in numerical simulations to compare the characteristics of acoustic microstreaming at different frequencies, separation distances between the bubbles and bubble sizes. It is shown that the interaction of the bubbles leads to a considerable increase in the intensity of the velocity and stress fields of acoustic microstreaming if the bubbles are driven near the resonance frequencies that they have in the presence of each other. Patterns of streamlines for different situations are presented.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Collis, J., Manasseh, R., Liovic, P., Tho, P., Ooi, A., Petkovic-Duran, K. & Zhu, Y. 2010 Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50, 273279.Google Scholar
Davidson, B. J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15, 217233.Google Scholar
Doinikov, A. A. & Bouakaz, A. 2010a Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127, 703709.Google Scholar
Doinikov, A. A. & Bouakaz, A. 2010b Acoustic microstreaming around an encapsulated particle. J. Acoust. Soc. Am. 127, 12181227.Google Scholar
Doinikov, A. A. & Bouakaz, A. 2014 Effect of a distant rigid wall on microstreaming generated by an acoustically driven gas bubble. J. Fluid Mech. 742, 425445.CrossRefGoogle Scholar
Elder, S. A. 1959 Cavitation microstreaming. J. Acoust. Soc. Am. 31, 5464.Google Scholar
Kolb, J. & Nyborg, W. 1956 Small-scale acoustic streaming in liquids. J. Acoust. Soc. Am. 28, 12371242.Google Scholar
Lighthill, S. J. 1978 Acoustic streaming. J. Sound Vib. 61, 391418.Google Scholar
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2, 151157.Google Scholar
Liu, X. & Wu, J. 2009 Acoustic microstreaming around an isolated encapsulated microbubble. J. Acoust. Soc. Am. 125, 13191330.Google Scholar
Longuet-Higgins, M. S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454, 725742.Google Scholar
Maksimov, A. O. 2007 Viscous streaming from surface waves on the wall of acoustically-driven gas bubbles. Eur. J. Mech. (B/Fluids) 26, 2842.Google Scholar
Nyborg, W. L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30, 329339.Google Scholar
Nyborg, W. L. 1965 Acoustic streaming. In Physical Acoustics (ed. Mason, W. P.), vol. 2B, pp. 265330. Academic.Google Scholar
Nyborg, W. L. 1978 Physical principles of ultrasound. In Ultrasound: Its Applications in Medicine and Biology (ed. Fry, F. J.), pp. 175. Elsevier.Google Scholar
Rooney, J. A. 1970 Hemolysis near an ultrasonically pulsating gas bubble. Science 169, 869871.Google Scholar
Rooney, J. A. 1972 Shear as a mechanism for sonically induced biological effects. J. Acoust. Soc. Am. 52, 17181724.CrossRefGoogle ScholarPubMed
Tho, P., Manasseh, R. & Ooi, A. 2007 Cavitation microstreaming in single and multiple bubble systems. J. Fluid Mech. 576, 191233.Google Scholar
Wang, C., Jalikop, S. V. & Hilgenfeldt, S. 2012 Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 6, 012801.Google Scholar
Wu, J. 2002 Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med. Biol. 28, 125129.Google Scholar
Wu, J. & Du, G. 1997 Streaming generated by a bubble in an ultrasound field. J. Acoust. Soc. Am. 101, 18991907.CrossRefGoogle Scholar
Wu, J. & Nyborg, W. L. 2008 Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60, 11031116.Google Scholar