Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:38:36.419Z Has data issue: false hasContentIssue false

Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches

Published online by Cambridge University Press:  13 April 2010

V. L. OKULOV*
Affiliation:
Department of Mechanical Engineering and Center for Fluid Dynamics, Technical University of Denmark, Nils Koppels Allé, 403, DK-2800 Lyngby, Denmark
J. N. SØRENSEN
Affiliation:
Department of Mechanical Engineering and Center for Fluid Dynamics, Technical University of Denmark, Nils Koppels Allé, 403, DK-2800 Lyngby, Denmark
*
Email address for correspondence: [email protected]

Abstract

On the basis of the concepts outlined by Joukowsky nearly a century ago, an analytical aerodynamic optimization model is developed for rotors with a finite number of blades and constant circulation distribution. In the paper, we show the basics of the new model and compare its efficiency with results for rotors designed using the optimization model of Betz.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betz, A. 1919 Schraubenpropeller mit geringstem Energieverlust. Dissertation, Göttingen Nachrichten, Göttingen.Google Scholar
Fukumoto, Y. & Okulov, V. L. 2005 The velocity field induced by a helical vortex tube. Phys. Fluids. 17 (10), 107101 (1–19).CrossRefGoogle Scholar
Glauert, H. 1935 Airplane propellers. In Division L in Aerodynamic Theory (ed. Durand, ), vol. 4, pp. 169360. Springer.CrossRefGoogle Scholar
Goldstein, S. 1929 On the vortex theory of screw propellers. Proc. R. Soc. Lond. A 123, 440465.Google Scholar
Joukowsky, N. E. 1912 Vortex theory of screw propeller, I. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya 16 (1), 131 (in Russian). French translation in: Théorie tourbillonnaire de l'hélice propulsive (Gauthier-Villars, Paris, 1929) 1–47.Google Scholar
Joukowsky, N. E. 1914 Vortex theory of screw propeller, II. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya 17 (1), 133 (in Russian). French translation in: Théorie tourbillonnaire de l'hélice propulsive (Gauthier-Villars, Paris, 1929) 48–93.Google Scholar
Joukowsky, N. E. 1915 Vortex theory of screw propeller, III. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya 17 (2), 123 (in Russian). French translation in: Théorie tourbillonnaire de l'hélice propulsive (Gauthier-Villars, Paris, 1929) 94–122.Google Scholar
Joukowsky, N. E. 1918 Vortex theory of screw propeller, IV. Trudy Avia Raschetno-Ispytatelnogo Byuro, no 3, 1–97 (in Russian). French translation in: Théorie tourbillonnaire de l'hélice propulsive (Gauthier-Villars, Paris, 1929) 123–198.Google Scholar
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.CrossRefGoogle Scholar
Okulov, V. L. & Sørensen, J. N. 2007 Stability of helical tip vortices in rotor far wake. J. Fluid Mech. 576, 125.CrossRefGoogle Scholar
Okulov, V. L. & Sørensen, J. N. 2008 a Refined Betz limit for rotors with a finite number of blades. Wind Energy 11 (4), 415426.CrossRefGoogle Scholar
Okulov, V. L. & Sørensen, J. N. 2008 b An ideal wind turbine with a finite number of blades. Doklady Phys. 53 (6), 337342.CrossRefGoogle Scholar