Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:56:52.289Z Has data issue: false hasContentIssue false

Intermittent modal coupling in screeching underexpanded circular twin jets

Published online by Cambridge University Press:  11 January 2021

G. Bell*
Affiliation:
Department of Mechanical and Aerospace Engineering, Laboratory of Turbulence Research in Aerospace and Combustion, Monash University, Melbourne, Victoria3800, Australia
J. Cluts
Affiliation:
Department of Mechanical and Aerospace Engineering, Gas Dynamics and Turbulence Laboratory, Aerospace Research Center, The Ohio State University, Columbus, OH43235, USA
M. Samimy
Affiliation:
Department of Mechanical and Aerospace Engineering, Gas Dynamics and Turbulence Laboratory, Aerospace Research Center, The Ohio State University, Columbus, OH43235, USA
J. Soria
Affiliation:
Department of Mechanical and Aerospace Engineering, Laboratory of Turbulence Research in Aerospace and Combustion, Monash University, Melbourne, Victoria3800, Australia
D. Edgington-Mitchell
Affiliation:
Department of Mechanical and Aerospace Engineering, Laboratory of Turbulence Research in Aerospace and Combustion, Monash University, Melbourne, Victoria3800, Australia
*
Email address for correspondence: [email protected]

Abstract

In this article the erratic coupling that can occur in screeching supersonic twin jets is characterised. Non-stationary acoustic analysis is used to investigate the temporal behaviour of the coupling phenomena. The results show that where the phase between the jets is time varying, the screech tone experiences interruptions. The interruptions are either correlated and experienced by both jets or are anti-correlated and only by one. During the anti-correlated interruption, the uninterrupted jet screeches as an isolated jet. The instantaneous velocity field shows that for the majority of snapshots during an acoustic interruption, the jets do not exhibit a coupled oscillation. When the jets are uninterrupted, they are oscillating in either a coupled symmetric or anti-symmetric mode. This behaviour manifests at a condition between two operating points characterised by different coupling modes. It suggests the interruptions arise due to a competition between two global modes of the flow. Despite the existence of multiple acoustic tones in the region where these modes are competing, analysis of the individual jets reveals energetic structures with only a single wavelength. It is found that jets whose own oscillation is characterised by a single wavelength can, through coupling either symmetrically or anti-symmetrically about their symmetry plane, produce different acoustic tones. These findings are consistent across three experimental facilities. The observed modes are a function of the jet spacing and nozzle pressure, therefore future studies investigating other spacings must recharacterise the encountered coupled modes. This article provides the signatures to characterise the behaviour for future studies.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alkislar, M. B., Krothapalli, A., Choutapalli, I. & Lourenco, L. 2005 Structure of supersonic twin jets. AIAA J. 43 (11), 23092318.CrossRefGoogle Scholar
Alkislar, M. B., Krothapalli, A. & Lourenco, L. M. 2003 Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study. J. Fluid. Mech. 489 (489), 121154.CrossRefGoogle Scholar
Bell, G., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2017 Particle image velocimetry analysis of the twin supersonic jet structure and standing-wave. AIAA Paper 2017-3517.CrossRefGoogle Scholar
Bell, G., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2018 An experimental investigation of coupled underexpanded supersonic twin-jets. Exp. Fluids 59 (9), 139.CrossRefGoogle Scholar
Berndt, D. E. 1984 Dynamic pressure fluctuations in the internozzle region of a twin-jet nacelle. In SAE Technical Paper, p. 10. Society of Automotive Engineers.CrossRefGoogle Scholar
Berry, M. G., Magstadt, A. S. & Glauser, M. N. 2017 Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets. Phys. Fluids 29 (2), 020706.CrossRefGoogle Scholar
Brès, G. A., Ham, F. E. & Lele, S. K. 2013 Unstructured large eddy simulations of heated supersonic twin jets. J. Acoust. Soc. Am. 134 (5), 41284128.CrossRefGoogle Scholar
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18–19), 44744492.CrossRefGoogle Scholar
Cluts, J., Kuo, C.-W. & Samimy, M. 2017 An investigation of effects of jet temperature on twin-jet flow and acoustic fields. AIAA Paper 2017-0004.CrossRefGoogle Scholar
Crawley, M., Gefen, L., Kuo, C.-W., Samimy, M. & Camussi, R. 2018 Vortex dynamics and sound emission in excited high-speed jets. J. Fluid Mech. 839, 313347.CrossRefGoogle Scholar
Du, Z. 1993 Acoustic and Kelvin–Helmholtz instability waves of twin supersonic jets. PhD thesis, Florida State University.Google Scholar
Du, J. 2003 Kelvin–Helmholtz instability waves of supersonic multiple jets. In Proceedings of the 4th AIMS International Conference on Dynamical Systems and Differential Equations (Wilmington, NC, USA), p. 234. American Institute of Mathematical Sciences.Google Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review. Intl J. Aeroacoust. 18 (2–3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2014 a The underexpanded jet Mach disk and its associated shear layer. Phys. Fluids 26 (9), 096101.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2015 Multimodal instability in the weakly underexpanded elliptic jet. AIAA J. 53 (9), 27392749.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 a Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Oberleithner, K., Honnery, D. R. & Soria, J. 2014 b Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.CrossRefGoogle Scholar
Edgington-Mitchell, D. M., Weightman, J. L., Honnery, D. R. & Soria, J. 2018 b Sound production by shock leakage in supersonic jet screech. AIAA Paper 2018-3147.CrossRefGoogle Scholar
Gao, J. H. & Li, X. D. 2010 A multi-mode screech frequency prediction formula for circular supersonic jets. J. Acoust. Soc. Am. 127 (3), 12511257.CrossRefGoogle ScholarPubMed
Gojon, R., Baier, F., Gutmark, E. & Mihaescu, M. 2017 Temperature effects on the aerodynamic and acoustic fields of a rectangular supersonic jet. AIAA Paper 2017-0002.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Gojon, R., Gutmark, E. & Mihaescu, M. 2019 Antisymmetric oscillation modes in rectangular screeching jets. AIAA J. 57 (8), 34223441.CrossRefGoogle Scholar
Goparaju, K. & Gaitonde, D. V. 2018 Dynamics of closely spaced supersonic jets. J. Propul. Power 34 (2), 327339.CrossRefGoogle Scholar
Huang, N. E. 2014 Hilbert-Huang Transform and its Applications, vol. 16. World Scientific.CrossRefGoogle Scholar
Jaunet, V., Jordan, P. & Cavalieri, A. V. G. 2017 Two-point coherence of wave packets in turbulent jets. Phys. Rev. Fluids 2 (2), 024604.CrossRefGoogle Scholar
Knast, T., Bell, G., Wong, M., Leb, C. M., Soria, J., Honnery, D. R. & Edgington-Mitchell, D. 2018 Coupling modes of an underexpanded twin axisymmetric jet. AIAA J. 56 (9), 35243535.CrossRefGoogle Scholar
Kuo, C.-W., Cluts, J. & Samimy, M. 2016 a Active flow control of supersonic twin-jet plumes. J. Aeronaut. Astronaut. Aviation 48 (4), 243251.Google Scholar
Kuo, C.-W., Cluts, J. & Samimy, M. 2016 b An investigation of twin supersonic jet coupling. AIAA Paper 2016-1113.CrossRefGoogle Scholar
Kuo, C.-W., Cluts, J. & Samimy, M. 2017 a Effects of excitation around jet preferred mode Strouhal number in high-speed jets. Exp. Fluids 58 (4), 35.CrossRefGoogle Scholar
Kuo, C.-W., Cluts, J. & Samimy, M. 2017 b Exploring physics and control of twin supersonic circular jets. AIAA J. 55, 6885.CrossRefGoogle Scholar
Lumley, J. 1967 The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Wave Propagation (ed. A. M. Yaglom & V. I. Tatarski), pp. 166–178. Nauka.Google Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60 (1), 22.CrossRefGoogle Scholar
Mancinelli, M., Pagliaroli, T., Camussi, R. & Castelain, T. 2018 On the hydrodynamic and acoustic nature of pressure proper orthogonal decomposition modes in the near field of a compressible jet. J. Fluid Mech. 836, 9981008.CrossRefGoogle Scholar
Mercier, B., Castelain, T. & Bailly, C. 2017 Experimental characterisation of the screech feedback loop in underexpanded round jets. J. Fluid Mech. 824, 202229.CrossRefGoogle Scholar
Morris, P. J. 1990 Instability waves in twin supersonic jets. J. Fluid Mech. 220 (1), 293307.CrossRefGoogle Scholar
Panda, J. 1999 An experimental investigation of screech noise generation. J. Fluid Mech. 378, 7196.CrossRefGoogle Scholar
Panickar, P., Srinivasan, K. & Raman, G. 2004 Aeroacoustic features of coupled twin jets with spanwise oblique shock-cells. J. Sound Vib. 278 (1–2), 155179.CrossRefGoogle Scholar
Panickar, P., Srinivasan, K. & Raman, G. 2005 Nonlinear interactions as precursors to mode jumps in resonant acoustics. Phys. Fluids 17 (9), 118.CrossRefGoogle Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. 66 (12), 10391056.CrossRefGoogle Scholar
Powell, A. 1954 The reduction of choked jet noise. Proc. Phys. Soc. 67 (4), 313327.CrossRefGoogle Scholar
Raman, G. 1998 Coupling of twin rectangular supersonic jets. J. Fluid Mech. 354 (5), 123146.CrossRefGoogle Scholar
Raman, G., Panickar, P. & Chelliah, K. 2012 Aeroacoustics of twin supersonic jets: a review. Intl J. Aeroacoust. 11 (7), 957984.CrossRefGoogle Scholar
Rodríguez, D., Jotkar, M. R. & Gennaro, E. M. 2018 Wavepacket models for subsonic twin jets using 3D parabolized stability equations. C. R. Méc. 346 (10), 890–902.CrossRefGoogle Scholar
Seiner, J., Manning, J. C. & Ponton, M. K. 1986 Dynamic pressure loads associated with twin supersonic plume resonance. AIAA J. 26 (8), 954960.CrossRefGoogle Scholar
Shaw, L. 1990 Twin-jet screech suppression. J. Aircraft 27 (8), 708715.CrossRefGoogle Scholar
Shen, H. & Tam, C. K. W. 2000 Effects of jet temperature and nozzle-lip thickness on screech tones. AIAA J. 38 (5).CrossRefGoogle Scholar
Shen, H. & Tam, C. K. W. 2002 Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J. 40 (1), 3341.CrossRefGoogle Scholar
Sirovich, L. 1987 a Turbulence and the dynamics of coherent structures. Part I. Coherent structures. Q. Appl. Maths XLV (3), 561571.CrossRefGoogle Scholar
Sirovich, L. 1987 b Turbulence and the dynamics of coherent structures. Part II. Symmetries and transformations. Q. Appl. Maths 45 (3), 573582.CrossRefGoogle Scholar
Srinivasan, K., Panickar, P., Raman, G., Kim, B. H. & Williams, D. R. 2009 Study of coupled supersonic twin jets of complex geometry using higher-order spectral analysis. J. Sound Vib. 323 (3–5), 910931.CrossRefGoogle Scholar
Suzuki, T. & Lele, S. K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490 (490), 139167.CrossRefGoogle Scholar
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.CrossRefGoogle Scholar
Tan, D. J., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2017 Novel method for investigating broadband velocity fluctuations in axisymmetric screeching jets. AIAA J. 55 (7), 23212334.CrossRefGoogle Scholar
Umeda, Y. & Ishii, R. 2001 Oscillation modes of supersonic multijets exhausting from very adjacent multiple nozzles. J. Acoust. Soc. Am. 110 (4), 18731877.CrossRefGoogle ScholarPubMed
Weightman, J. L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2016 Supersonic jet impingement on a cylindrical surface. AIAA Paper 2016-2800.CrossRefGoogle Scholar
Weightman, J. L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2019 Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet. J. Fluid Mech. 862, 421448.CrossRefGoogle Scholar
Weightman, J. L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, 815R11815R111.CrossRefGoogle Scholar
Weightman, J. L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2018 Signatures of shear-layer unsteadiness in proper orthogonal decomposition. Exp. Fluids 59 (12), 180.CrossRefGoogle Scholar
Wlezien, R. 1989 Nozzle geometry effects on supersonic jet interaction. AIAA J. 27 (10), 13611367.CrossRefGoogle Scholar
Zilz, D. & Wlezien, R. 1990 The sensitivity of near-field acoustics to the orientation of twin two-dimensional supersonic nozzles. AIAA Paper 90-2149.CrossRefGoogle Scholar

Bell et al. supplementary movie 1

This video shows the proper orthogonal decomposition reconstruction of the velocity field. The dominant modes are used to provide phase information. The first twenty modes are used to add fluctuation information.

Download Bell et al. supplementary movie 1(Video)
Video 12.2 MB

Bell et al. supplementary movie 2

This video shows time resolved coupling of supersonic twin jets using ultra high speed schlieren photography. Different nozzle pressure ratios are shown. In certain regions, the coupling is shown to be unsteady and interrupted via acoustic and particle image velocimetry. This video shows the this unsteadiness as a qualitative comparison.

Download Bell et al. supplementary movie 2(Video)
Video 11.3 MB