Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:57:21.677Z Has data issue: false hasContentIssue false

The influence of near-wall density and viscosity gradients on turbulence in channel flows

Published online by Cambridge University Press:  17 November 2016

Ashish Patel*
Affiliation:
Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
Bendiks J. Boersma
Affiliation:
Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
Rene Pecnik*
Affiliation:
Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel is studied by means of direct numerical simulation of the low-Mach-number approximation of the Navier–Stokes equations. Different constitutive relations for density $\unicode[STIX]{x1D70C}$ and viscosity $\unicode[STIX]{x1D707}$ as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable-property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semilocal Reynolds number, defined as $Re_{\unicode[STIX]{x1D70F}}^{\star }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{(\overline{\unicode[STIX]{x1D70C}}/\overline{\unicode[STIX]{x1D70C}}_{w})}/(\overline{\unicode[STIX]{x1D707}}/\overline{\unicode[STIX]{x1D707}}_{w})$ (the bar and subscript $w$ denote Reynolds averaging and wall value respectively, while $Re_{\unicode[STIX]{x1D70F}}$ is the friction Reynolds number based on wall values). This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semilocal wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to the wall. This is attributed to turbulence modulations, which play a crucial role in the evolution of turbulent structures and turbulence energy transfer. We therefore investigate the characteristics of streamwise velocity streaks and quasistreamwise vortices and find that, similarly to turbulence statistics, the turbulent structures are also strongly governed by $Re_{\unicode[STIX]{x1D70F}}^{\star }$ profiles and that their dependence on individual density and viscosity profiles is minor. Flows with near-wall gradients in $Re_{\unicode[STIX]{x1D70F}}^{\star }$ ($\text{d}Re_{\unicode[STIX]{x1D70F}}^{\star }/\text{d}y\neq 0$) show significant changes in inclination and tilting angles of quasistreamwise vortices. These structural changes are responsible for the observed modulation of the Reynolds stress generation mechanism and the inter-component energy transfer in flows with strong near-wall $Re_{\unicode[STIX]{x1D70F}}^{\star }$ gradients.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Kawamura, H. & Choi, H. 2004 Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re 𝜏 = 640. Trans. ASME J. Fluids Engng 126 (5), 835843.Google Scholar
Antonia, R. & Kim, J. 1994 Low-Reynolds-number effects on near-wall turbulence. J. Fluid Mech. 276, 6180.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.Google Scholar
Boersma, B. J. 2011 A 6th order staggered compact finite difference method for the incompressible Navier–Stokes and scalar transport equations. J. Comput. Phys. 230 (12), 49404954.CrossRefGoogle Scholar
Bushnell, D. M. & Mcginley, C. B. 1989 Turbulence control in wall flows. Annu. Rev. Fluid Mech. 21 (1), 120.CrossRefGoogle Scholar
Chen, H., Adrian, R. J., Zhong, Q. & Wang, X. 2014 Analytic solutions for three dimensional swirling strength in compressible and incompressible flows. Phys. Fluids 26 (8), 081701.Google Scholar
Chernyshenko, S. & Baig, M. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544 (1), 99131.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.Google Scholar
Duan, L., Beekman, I. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Elsinga, G., Adrian, R., Van Oudheusden, B. & Scarano, F. 2010 Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech. 644, 3560.CrossRefGoogle Scholar
Eyink, G. L. 2008 Turbulent flow in pipes and channels as cross-stream inverse cascades of vorticity. Phys. Fluids 20 (12), 125101.Google Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.CrossRefGoogle Scholar
Gad-el Hak, M. 1990 Control of low-speed airfoil aerodynamics. AIAA J. 28 (9), 15371552.Google Scholar
Gao, Q., Ortiz-Duenas, C. & Longmire, E. 2011 Analysis of vortex populations in turbulent wall-bounded flows. J. Fluid Mech. 678, 87123.Google Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Huang, P. & Coleman, G. N. 1994 Van Driest transformation and compressible wall-bounded flows. AIAA J. 32 (10), 21102113.Google Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.Google Scholar
Jiménez, J. & Moser, R. D. 2007 What are we learning from simulating wall turbulence? Phil. Trans. R. Soc. Lond. A 365 (1852), 715732.Google Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.Google Scholar
Johansson, A. V., Alfredsson, P. H. & Kim, J. 1991 Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579599.Google Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A: Fluid Dynamics 5 (3), 695706.CrossRefGoogle Scholar
Kim, J. & Lim, J. 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12 (8), 18851888.Google Scholar
Klewicki, J., Metzger, M., Kelner, E. & Thurlow, E. 1995 Viscous sublayer flow visualizations at R 𝜃 = 1 500 000. Phys. Fluids 7 (4), 857863.Google Scholar
Kline, S., Reynolds, W., Schraub, F. & Runstadler, P. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (04), 741773.CrossRefGoogle Scholar
Lagha, M., Kim, J., Eldredge, J. & Zhong, X. 2011a A numerical study of compressible turbulent boundary layers. Phys. Fluids 23 (1), 015106.Google Scholar
Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X. 2011b Near-wall dynamics of compressible boundary layers. Phys. Fluids 23 (6), 065109.Google Scholar
Lechner, R., Sesterhenn, J. & Friedrich, R. 2001 Turbulent supersonic channel flow. J. Turbul. 2, 125.CrossRefGoogle Scholar
Lee, J., Yoon Jung, S., Jin Sung, H. & Zaki, T. A. 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.Google Scholar
Maeder, T.2000 Numerical investigation of supersonic turbulent boundary layers. PhD Thesis, ETH Zürich, Institute of Fluid Dynamics.Google Scholar
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.Google Scholar
Majda, A. & Sethian, J. 1985 The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42 (3–4), 185205.Google Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.Google Scholar
Mcmurtry, P. A., Jou, W.-H., Riley, J. & Metcalfe, R. 1986 Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA J. 24 (6), 962970.CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.Google Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re = 590. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Nemati, H., Patel, A., Boersma, B. J. & Pecnik, R. 2015 Mean statistics of a heated turbulent pipe flow at supercritical pressure. Intl J. Heat Mass Transfer 83, 741752.Google Scholar
Patel, A., Peeters, J. W. R., Boersma, B. J. & Pecnik, R. 2015 Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095101.Google Scholar
Pei, J., Chen, J., Hussain, F. & She, Z. 2013 New scaling for compressible wall turbulence. Sci. China Phys., Mech., Astron. 56 (9), 17701781.Google Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.Google Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2008 Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205231.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. 25. Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Ringuette, M. J., Wu, M. & Martin, M. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Shadloo, M., Hadjadj, A. & Hussain, F. 2015 Statistical behavior of supersonic turbulent boundary layers with heat transfer at M = 2. Intl J. Heat Fluid Flow 53, 113134.Google Scholar
Smith, C. & Metzler, S. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.Google Scholar
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer.Google Scholar
Spina, E. F. & Smits, A. J. 1987 Organized structures in a compressible, turbulent boundary layer. J. Fluid Mech. 182, 85109.CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.Google Scholar
Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.CrossRefGoogle Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F., Li, X.-L. & She, Z.-S. 2012 Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Phys. Rev. Lett. 109 (5), 054502.Google ScholarPubMed
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar
Zonta, F., Marchioli, C. & Soldati, A. 2012 Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech. 697, 150174.CrossRefGoogle Scholar