Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T03:12:38.684Z Has data issue: false hasContentIssue false

Freezing colloidal suspensions: periodic ice lenses and compaction

Published online by Cambridge University Press:  14 October 2014

Anthony M. Anderson*
Affiliation:
Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
M. Grae Worster
Affiliation:
Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: [email protected]

Abstract

Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech., vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersland, O. B. & Ladanyi, B. 2004 Frozen Ground Engineering. John Wiley & Sons.Google Scholar
Anderson, A. M. & Worster, M. G. 2012 Periodic ice banding in freezing colloidal dispersions. Langmuir 28 (48), 1651216523.CrossRefGoogle ScholarPubMed
Bensley, C. N. & Hunter, R. J. 1983 The coagulation of concentrated colloidal dispersions at low electrolyte concentrations: II. Experimental coagulation pressures. J. Colloid Interface Sci. 92 (2), 448462.Google Scholar
Cahn, J. W., Dash, J. G. & Fu, H. 1992 Theory of ice premelting in monosized powders. J. Cryst. Growth 123 (1), 101108.CrossRefGoogle Scholar
Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. 2006 The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78 (3), 695741.Google Scholar
Davis, S. H. 2001 Theory of Solidification. Cambridge University Press.Google Scholar
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J. & Guizard, C. 2009 Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 8 (12), 966972.Google Scholar
Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. 2006 Freezing as a path to build complex composites. Science 311 (5760), 515518.Google Scholar
Fowler, A. C. 1989 Secondary frost heave in freezing soils. SIAM J. Appl. Maths 49 (4), 9911008.Google Scholar
French, H. M. 2007 The Periglacial Environment. John Wiley & Sons.CrossRefGoogle Scholar
Goehring, L., Clegg, W. J. & Routh, A. F. 2010 Solidification and ordering during directional drying of a colloidal dispersion. Langmuir 26 (12), 92699275.CrossRefGoogle ScholarPubMed
Hansen-Goos, H. & Wettlaufer, J. S. 2010 Theory of ice premelting in porous media. Phys. Rev. E 81 (3), 031604.Google Scholar
Israelachvili, J. N. 2011 Intermolecular and Surface Forces. 3rd edn. Academic Press.Google Scholar
Mazur, P. 1984 Freezing of living cells: mechanisms and implications. Am. J. Physiol. Cell Physiol. 247, 125142.Google Scholar
Meijer, A. E. J., Van Megen, W. J. & Lyklema, J. 1978 Pressure-induced coagulation of polystyrene latices. J. Colloid Interface Sci. 66 (1), 99104.Google Scholar
O’Neill, K. & Miller, R. D. 1985 Exploration of a rigid ice model of frost heave. Water Resour. Res. 21 (3), 281296.CrossRefGoogle Scholar
Peppin, S. S. L., Elliott, J. A. W. & Worster, M. G. 2005 Pressure and relative motion in colloidal suspensions. Phys. Fluids 17 (5), 053301.CrossRefGoogle Scholar
Peppin, S. S. L., Elliott, J. A. W. & Worster, M. G. 2006 Solidification of colloidal suspensions. J. Fluid Mech. 554, 147166.CrossRefGoogle Scholar
Peppin, S. S. L., Huppert, H. E. & Worster, M. 2008a Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech. 599, 465476.Google Scholar
Peppin, S., Majumdar, A., Style, R. & Sander, G. 2011 Frost heave in colloidal soils. SIAM J. Appl. Maths 71 (5), 17171732.Google Scholar
Peppin, S. S. L. & Style, R. W. 2013 The physics of frost heave and ice-lens growth. Vadose Zone J. 12.Google Scholar
Peppin, S. S. L., Wettlaufer, J. S. & Worster, M. G. 2008b Experimental verification of morphological instability in freezing aqueous colloidal suspensions. Phys. Rev. Lett. 100 (23), 238301.CrossRefGoogle ScholarPubMed
Rapatz, G., Menz, L. J. & Luyet, B. J. 1966 Anatomy of the freezing process in biological materials. In Cryobiology (ed. Meryman, H. T.). Academic.Google Scholar
Rempel, A. W. 2007 Formation of ice lenses and frost heave. J. Geophys. Res. Earth Surf. 112, F02S21.CrossRefGoogle Scholar
Rempel, A. W. 2012 Hydromechanical processes in freezing soils. Vadose Zone J. 11.Google Scholar
Rempel, A. W., Wettlaufer, J. S. & Worster, M. G. 2001 Interfacial premelting and the thermomolecular force: thermodynamic buoyancy. Phys. Rev. Lett. 87 (8), 088501.Google Scholar
Rempel, A. W., Wettlaufer, J. S. & Worster, M. G. 2004 Premelting dynamics in a continuum model of frost heave. J. Fluid Mech. 498, 227244.Google Scholar
Style, R. W. & Peppin, S. S. L. 2012 The kinetics of ice-lens growth in porous media. J. Fluid Mech. 692, 482498.Google Scholar
Style, R. W., Peppin, S. S. L., Cocks, A. C. F. & Wettlaufer, J. S. 2011 Ice-lens formation and geometrical supercooling in soils and other colloidal materials. Phys. Rev. E 84 (4), 041402.Google Scholar
Taber, S. 1929 Frost heaving. J. Geol. 37, 428461.Google Scholar
Taber, S. 1930 The mechanics of frost heaving. J. Geol. 38, 303317.Google Scholar
Tsapis, N., Dufresne, E. R., Sinha, S. S., Riera, C. S., Hutchinson, J. W., Mahadevan, L. & Weitz, D. A. 2005 Onset of buckling in drying droplets of colloidal suspensions. Phys. Rev. Lett. 94 (1), 018302.CrossRefGoogle ScholarPubMed
Velez-Ruiz, J. F. & Rahman, M. S. 2007 Handbook of Food Preservation, chap. 26. CRC Press.Google Scholar
Watanabe, K. 2002 Relationship between growth rate and supercooling in the formation of ice lenses in a glass powder. J. Cryst. Growth 237, 21942198.CrossRefGoogle Scholar
Watanabe, K. & Mizoguchi, M. 2000 Ice configuration near a growing ice lens in a freezing porous medium consisting of micro glass particles. J. Cryst. Growth 213 (1), 135140.Google Scholar
Wettlaufer, J. S. & Worster, M. G. 2006 Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427452.Google Scholar
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P. & Cooper, A. I. 2005 Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4 (10), 787793.Google Scholar