Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:58:53.809Z Has data issue: false hasContentIssue false

Droplet impact on a thin liquid film: anatomy of the splash

Published online by Cambridge University Press:  10 August 2016

Christophe Josserand*
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France
Pascal Ray
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France
Stéphane Zaleski
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the dynamics of drop impact on a thin liquid film at short times in order to identify the mechanisms of splash formation. Using numerical simulations and scaling analysis, we show that it depends both on the inertial dynamics of the liquid and the cushioning of the gas. Two asymptotic regimes are identified, characterized by a new dimensionless number $J$: when the gas cushioning is weak, the jet is formed after a sequence of bubbles are entrapped and the jet speed is mostly selected by the Reynolds number of the impact. On the other hand, when the air cushioning is important, the lubrication of the gas beneath the drop and the liquid film controls the dynamics, leading to a single bubble entrapment and a weaker jet velocity.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G. & Deegan, R. 2014 Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752, 485496.CrossRefGoogle Scholar
Agbaglah, G., Thoraval, M.-J., Thoroddsen, S., Zhang, L., Fezzaa, K. & Deegan, R. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Deegan, R., Brunet, P. & Eggers, J. 2008 Complexities of splashing. Nonlinearity 21, C1.CrossRefGoogle Scholar
Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.CrossRefGoogle Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.CrossRefGoogle Scholar
Gueyffier, D. & Zaleski, S. 1998 Formation de digitations lors de l’impact d’une goutte sur un film liquide. C. R. Acad. Sci. Paris II 326, 839844.Google Scholar
Hicks, P. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Hicks, P. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23, 062104.CrossRefGoogle Scholar
Hicks, P. & Purvis, R. 2013 Liquid–solid impacts with compressible gas cushioning. J. Fluid Mech. 735, 120149.CrossRefGoogle Scholar
Howison, S., Ockendon, J., Oliver, J., Purvis, R. & Smith, F. 2005 Droplet impact on a thin fluid layer. J. Fluid. Mech. 542, 123.CrossRefGoogle Scholar
Jian, Z., Josserand, C., Ray, P., Duchemin, L., Popinet, S. & Zaleski, S.2015 Modelling the thickness of the air layer in droplet impact. In ICLASS 2015, 13th Triennial International Conference on Liquid Atomization and Spray Systems (Tainan, Taiwan, 23–27 August 2015).Google Scholar
Josserand, C. & Thoroddsen, S. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 1650.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D. Y. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113 (19), 194501.CrossRefGoogle ScholarPubMed
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
Korobkin, A., Ellis, A. & Smith, F. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.CrossRefGoogle Scholar
Lagrée, P. Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a 𝜇(I)-rheology. J. Fluid Mech. 686, 378408.CrossRefGoogle Scholar
Lesser, M. & Field, J. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15, 97122.CrossRefGoogle Scholar
Luchini, P. & Charru, F. 2010 Consistent section-averaged equations of quasi-one-dimensional laminar flow. J.  Fluid. Mech. 565, 337341.CrossRefGoogle Scholar
Mandre, S. & Brenner, M. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.CrossRefGoogle Scholar
Mandre, S., Mani, M. & Brenner, M. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.CrossRefGoogle ScholarPubMed
Mani, M., Mandre, S. & Brenner, M. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
Mehdi-Nejad, V., Mostaghimi, J. & Chandra, S. 2003 Air bubble entrapment under an impacting droplet. Phys. Fluids 15 (1), 173183.CrossRefGoogle Scholar
Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet-wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.CrossRefGoogle Scholar
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on solid surface: short time self-similarity. J. Fluid Mech. 795, 96135.CrossRefGoogle Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.CrossRefGoogle Scholar
Popinet, S.2016 Gerris flow solver, http://gfs.sourceforge.net/.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.Google Scholar
Rieber, M. & Frohn, A. 1998 Numerical simulation of splashing drops. In Proceedings of ILASS98, Manchester, Academic Press.Google Scholar
Rioboo, R., Marengo, M. & Tropea, C. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.CrossRefGoogle Scholar
Stow, C. & Hadfield, M. 1981 An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 373, 419441.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Thoraval, M.-J., Takehara, K., Etoh, T., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.CrossRefGoogle Scholar
Thoroddsen, S. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Thoroddsen, S., Thoraval, M.-J., Takehara, K. & Etoh, T. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, A. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.CrossRefGoogle Scholar
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Wagner, H. 1932 Über Stoss und Gleitvorgänge und der Oberfläshe von Flüssigkeiten. Z. Angew. Math. Mech. 12 (4), 193215.CrossRefGoogle Scholar
Wang, A.-B., Kuan, C. C. & Tsai, P.-H. 2013 Do we understand the bubble formation by a single drop impacting upon liquid surface? Phys. Fluids 25, 101702.CrossRefGoogle Scholar
Wilson, S. & Duffy, B. 1998 On lubrication with comparable viscous and inertia forces. Q. J. Mech. Appl. Maths 51, 105124.CrossRefGoogle Scholar
Xu, L., Zhang, W. & Nagel, S. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
Yarin, A. & Weiss, D. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar