Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T05:04:08.211Z Has data issue: false hasContentIssue false

Computing internal viscous flow problems for the circle by integral methods

Published online by Cambridge University Press:  11 April 2006

R. D. Mills
Affiliation:
Computing Science Department, Glasgow University, Scotland

Abstract

Steady two-dimensional viscous motion within a circular cylinder generated by (a) the rotation of part of the cylinder wall and (b) fluid entering and leaving through slots in the wall is considered. Studied in particular are moving-surface problems with continuous and discontinuous surface speeds, simple inflow–outflow problems and the impinging-jet problem within a circle. The analytical solutions at zero Reynolds number are given for the last two types of problem. Numerical results are obtained at various Reynolds numbers from the integral representation of the solution. At zero Reynolds number this approach involves a quadrature around the circumference of the cylinder. At other Reynolds numbers it involves an iterative–integral technique based on the use of the ‘clamped-plate’ biharmonic Green's function.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 J. Fluid Mech. 1, 177.
Baturin, W. W. 1959 Lüftungsanlagen für Industriebauten. Berlin: Veb Verlag Technik.
Burgraff, O. R. 1966 J. Fluid Mech. 24, 113.
Dennemeyer, R. 1968 Introduction to Partial Differential Equations and Boundary Value Problems. McGraw-Hill.
Dennis, S. C. R. 1974 In Proc. 4th Int. Conf. on Numerical Methods in Fluid Dyn., p. 138, Springer.Google Scholar
Garabedian, P. R. 1964 Partial Differential Equations. Wiley.
Kuwahara, K. & Imai, I. 1969 Phys. Fluids Suppl. 12, II–94.
Mabey, D. G. 1957 J. Roy. Aero. Soc. 61, 181.
Michell, J. H. 1899 Proc. Lond. Math. Soc. 31, 100.
Mills, R. D. 1964 Aero. Res. Counc. R. & M. no. 3428.
Mills, R. D. 1965 J. Roy. Aero. Soc. 69, 714.
Mills, R. D. 1968 J. Mech. Engng Sci. 10, 133.
Mills, R. D. 1974 Aero. Res. Counc. R. & M. no. 3742.
Panikker, P. K. G. & Lavan, Z. 1975 J. Comp. Phys. 18 (1), 46.
Rayleigh, Lord 1893 Phil. Mag. 5, 354.
Squire, H. B. 1956 J. Roy. Aero. Soc. 60, 203.
Timoshenko, S. & Goodier, J. N. 1951 Theory of Elasticity, 2nd edn. McGraw-Hill.
Tychonov, A. N. & Samarski, A. A. 1964 Partial Differential Equations of Mathematical Physics, vol. 1 (trans.). San Francisco: Holden-Day.
Wood, W. W. 1957 J. Fluid Mech. 2, 77.