Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T04:59:50.481Z Has data issue: false hasContentIssue false

Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities

Published online by Cambridge University Press:  18 January 2018

T. Medjnoun*
Affiliation:
Aerodynamics and Flight Mechanics Research Group, University of Southampton, Hampshire, SO17 1BJ, UK
C. Vanderwel
Affiliation:
Aerodynamics and Flight Mechanics Research Group, University of Southampton, Hampshire, SO17 1BJ, UK
B. Ganapathisubramani
Affiliation:
Aerodynamics and Flight Mechanics Research Group, University of Southampton, Hampshire, SO17 1BJ, UK
*
Email address for correspondence: [email protected]

Abstract

An experimental investigation of a turbulent boundary-layer flow over a heterogeneous surface is carried out to examine the mean flow and turbulence characteristics, and to document the variation of skin friction that might affect the applicability of traditional scaling and similarity laws. The heterogeneity is imposed along the spanwise direction and consists of streamwise-aligned smooth raised strips whose spanwise spacing $S$ is comparable to the boundary-layer thickness ($S/\unicode[STIX]{x1D6FF}=O(1)$). Single-point velocity measurements alongside direct skin-friction measurements are used to examine the validity of Townsend’s similarity hypothesis. The skin-friction coefficients reveal that the drag of the heterogeneous surface increased up to 35 % compared to a smooth wall, while velocity measurements reveal the existence of a log layer but with a zero-plane displacement and a roughness function that vary across the spanwise direction. Lack of collapse in the outer region of the mean velocity and variance profiles is attributed to the secondary flows induced by the heterogeneous surfaces. Additionally, the lack of similarity also extends to the spectra across all scales in the near-wall region with a gradual collapse at small wavelengths for increasing $S$. This suggests that the effect of surface heterogeneity is not necessarily felt at the smaller scales other than to reorganise their presence through turbulent transport.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akomah, A., Hangan, H. & Naughton, J. 2011 Very high Reynolds number boundary layers over 3d sparse roughness and obstacles: the mean flow. Exp. Fluids 51 (3), 743.Google Scholar
Alfredsson, P. H., Segalini, A. & Örlü, R. 2011 A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak. Phys. Fluids 23 (4), 041702.CrossRefGoogle Scholar
Amir, M. & Castro, I. P. 2011 Turbulence in rough-wall boundary layers: universality issues. Exp. Fluids 51 (2), 313326.Google Scholar
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.Google Scholar
Barros, J. M. & Christensen, K. T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.CrossRefGoogle Scholar
Blay Esteban, L., Dogan, E., Rodríguez-Lopéz, E. & Ganapathisubramani, B. 2017 Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence. Exp. Fluids 58 (9), 115.Google Scholar
Castro, I. P. 2007 Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469485.Google Scholar
Castro, I. P., Segalini, A. & Alfredsson, P. H. 2013 Outer-layer turbulence intensities in smooth-and rough-wall boundary layers. J. Fluid Mech. 727, 119131.Google Scholar
Chauhan, K., Ng, H. C. H. & Marusic, I. 2010 Empirical mode decomposition and hilbert transforms for analysis of oil-film interferograms. Meas. Sci. Technol. 21 (10), 105405.Google Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191226.Google Scholar
Dogan, E., Hanson, R. E. & Ganapathisubramani, B. 2016 Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79107.Google Scholar
Flack, K. A. & Schultz, M. P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME J. Fluids Engng 132 (4), 041203.Google Scholar
Flack, K. A. & Schultz, M. P. 2014 Roughness effects on wall-bounded turbulent flowsa. Phys. Fluids 26 (10), 101305.Google Scholar
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62 (1), 333358.Google Scholar
Hinze, J. O. 1967 Secondary currents in wall turbulence. Phys. Fluids 10 (9), 122-S12.Google Scholar
Hinze, J. O. 1973 Experimental investigation on secondary currents in the turbulent flow through a straight conduit. Appl. Sci. Res. 28 (1), 453465.Google Scholar
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.Google Scholar
Kevin, K., Monty, J. P., Bai, H. L., Pathikonda, G., Nugroho, B., Barros, J. M., Christensen, K. T. & Hutchins, N. 2017 Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. J. Fluid Mech. 813, 412435.Google Scholar
Krogstad, P. Å., Andersson, H. I., Bakken, O. M. & Ashrafian, A. 2005 An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327352.Google Scholar
Mejia-Alvarez, R. & Christensen, K. T. 2013 Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25 (11), 115109.Google Scholar
Nagib, H. M., Chauhan, K. A. & Monkewitz, P. A. 2007 Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 365 (1852), 755770.Google Scholar
Naughton, J. W. & Sheplak, M. 2002 Modern developments in shear-stress measurement. Prog. Aerosp. Sci. 38 (6–7), 515570.Google Scholar
Nugroho, B., Hutchins, N. & Monty, J. P. 2013 Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90102.Google Scholar
Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 A note on the overlap region in turbulent boundary layers. Phys. Fluids 12 (1), 14.CrossRefGoogle Scholar
Pailhas, G., Barricau, P., Touvet, Y. & Perret, L. 2009 Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method. Exp. Fluids 47 (2), 195207.Google Scholar
Raupach, M.-R. 1992 Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60 (4), 375395.Google Scholar
Reynolds, R. T., Hayden, P., Castro, I. P. & Robins, A. G. 2007 Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp. Fluids 42 (2), 311320.Google Scholar
Ruedi, J. D., Nagib, H., Österlund, J. & Monkewitz, P. A. 2003 Evaluation of three techniques for wall-shear measurements in three-dimensional flows. Exp. Fluids 35 (5), 389396.Google Scholar
Schultz, M. P. & Flack, K. A. 2005 Outer layer similarity in fully rough turbulent boundary layers. Exp. Fluids 38 (3), 328340.Google Scholar
Schultz, M. P. & Flack, K. A. 2009 Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21 (1), 015104.CrossRefGoogle Scholar
Segalini, A., Örlü, R. & Alfredsson, P. H. 2013 Uncertainty analysis of the von kármán constant. Exp. Fluids 54 (2), 19.Google Scholar
Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.Google Scholar
Squire, L. C. 1961 The motion of a thin oil sheet under the steady boundary layer on a body. J. Fluid Mech. 11, 161179.Google Scholar
Stroh, A., Hasegawa, Y., Kriegseis, J. & Frohnapfel, B. 2016 Secondary vortices over surfaces with spanwise varying drag. J. Turbul. 17 (12), 11421158.CrossRefGoogle Scholar
Tanner, L. H. & Blows, L. G. 1976 A study of the motion of oil films on surfaces in air flow, with application to the measurement of skin friction. J. Phys. E 9 (3), 194.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.Google Scholar
Vanderwel, C., Placidi, M. & Ganapathisubramani, B. 2017 Wind resource assessment in heterogeneous terrain. Phil. Trans. R. Soc. Lond. A 375 (2091), 20160109.Google ScholarPubMed
Volino, R. J., Schultz, M. P. & Flack, K. A. 2007 Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.Google Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2011 Turbulence structure in boundary layers over periodic two-and three-dimensional roughness. J. Fluid Mech. 676, 172190.Google Scholar
Wang, Z. Q. & Cheng, N. S. 2005 Secondary flows over artificial bed strips. Adv. Water Resour. 28 (5), 441450.Google Scholar
Wang, Z. Q. & Cheng, N. S. 2006 Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv. Water Resour. 29 (11), 16341649.Google Scholar
Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. M. 2014 Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26 (2), 025111.Google Scholar
Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 19 (8), 085108.Google Scholar
Yang, J. & Anderson, W. 2018 Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul. Combust. 100 (1), 117.CrossRefGoogle Scholar